
RBF Summary

1. What is a Radial Basis Function? A radial basis function (RBF) is a
general model to build a mapping from IRn to IRm.

2. Choices that need to be made when using an RBF:

(a) The transfer function, φ(r) that will be used. Some choices: φ(r) = r,
φ(r) = e−r2/σ2

, φ(r) = r3, etc.

(b) The model parameters for an RBF (given a data set, these are the
parameters we need to determine) are:

• The centers, ci which are also in IRn.
• The number of centers, k (independent of n or m)

The decision about the number and location of the centers can
be made in many ways. Some common choices:
– The centers are randomly chosen from the data.
– The centers are chosen as the centroids of data clusters.
– The centers are chosen automatically using Orthogonal Least

Squares (this is Matlab’s default).
• The weights (or coefficients) ωi, i = 1, 2, . . . , k.

3. Once the centers have been chosen, we solve for the coefficients using a
least squares solution. That is:

• Given p data points in IRn and k centers in IRn, form the p × k
Euclidean Distance Matrix (EDM) A, so that

Aij = dist(x(i), c(j)) = ‖x(i) − c(j)‖

• Form the transfer matrix Φ: Φ = φ(A). If biases are desired (and
they usually are), add a column of ones to the end of Φ, so that it is
p× (k + 1).

• We solve the matrix equation:

Φ ·W = Y

where W which has size (k+1)×m contains the weights of the linear
combination, and Y (which has size p × m) contains our desired
outputs.

4. To test the function on new domain points (we have now fixed the centers
and the weight matrix W ):

• Form the EDM. If we have p̂ new data points, this will be p̂× k.

• Form the transfer matrix Φ, which will be p̂× (k + 1).

• Perform the matrix product ΦW , and this will produce our new
output.

1



5. Why use an RBF?

(a) The number of parameters needed to define the model does NOT
depend on the dimension of the input (n); therefore using an RBF is
said to “avoid the curse of dimensionality” (this refers to the explo-
sion in the number of parameters usually needed when the dimension
of the domain gets big).

(b) Once the centers have been chosen, this is a linear modeling problem.
That is, to find the weights, we are solving a linear equation. There-
fore, an RBF is much faster than methods that involve nonlinear
optimization.

(c) There are nice connections to statistics if we use the Gaussian transfer
function, although we have not discussed them.

6. Matlab and the RBF. There are two ways of producing an RBF model
in Matlab- one is to do it explicitly, the other is to use Matlab’s built-in
routines using the “Neural Network Toolbox”.

Below, we assume X, Y are matrices that hold our desired domain and
range values. Assume that X, Y are p×n and p×m, respectively so that
we present the data row-wise.

• Explicit computations: Here we assume that the k centers have been
chosen and are in a matrix C that is k×n. Recall that we wrote our
own edm.m function:

A=edm(X,C); %A is p x k
Phi=exp(-A.^2./0.1); %Put in the transfer function here
Phi=[Phi, ones(p,1)); %Remember to add the ones
W=pinv(Phi)*Y; %Or we could use the SVD of Phi

To get new output using new domain data in a matrix P ,

A=edm(P,C);
Phi=exp(-A^2./0.1);
Phi=[Phi, ones(p,1)); %Remember to add the ones
newY=Phi*W;

• Using Matlab’s functions (Uses Orthogonal Least Squares to deter-
mine the number and placement of centers, also forces us to use
Gaussian transfer functions).

eg=0.1 %Set the error goal
%used in determining the number of centers

sp=0.5 %Set the spread of the Gaussians
net=newrb(X,Y,eg,sp);

In this case, net is a data structure that contains the weights and
some other information. To use the network on new data P ,
newY=sim(net,P)

2


