
Reminder: Method of Gradient Descent

The Derivative of the Sigmoidal

We will have the need to compute the derivative of the sigmoidal function.
The function

σ(x) =
1

1 + e−x

is especially attractive numerically, since the derivative is easy to compute.
Show that

σ′(x) = σ(x) (1− σ(x))

Backpropagation of Error

We start with a simple example: One input node, one node in the hidden
layer, and one output node. In this case, the function is:

x → [P = w1x + b1 → S = σ(P) = σ(w1x + b1)] → y = w2S+b2

where the hidden node is inside the brackets, P represents the “prestate”,
and S represents the state of the node.

Given target t, the error is

E(w1, w2, b1, b2) =
1

2
(t− y)2 =

1

2
(t− (w2σ(w1x + b1) + b2))

2

We want to minimize the error, so we move in the opposite direction of the
gradient. That is, we update all parameters u by:

unew = uold − α
∂E

∂u
= uold + α∆u

where α is called the learning rate, and the change in u is computed via
the chain rule on the error, where u is a placeholder for the parameters
w1, w2, b1, b2.

Notice that we incorporated the negative sign into ∆u- It will become
clear why we did that (its because of the (t − y) term- the derivative will
always be negative t− y). In particular,

∆u = −∂E

∂y
· ∂y

∂u
= −(t− y) · −∂y

∂u
= (t− y)

∂y

∂u

Now let us compute these partial derivatives:

∂y
∂w2

= S ⇒ ∆w2 = (t− y)S ∂y
∂b2

= 1 ⇒ ∆b2 = (t− y)

∂y
∂w1

= w2σ
′(P) · x

∆w1 = (t− y)w2σ
′(P) · x

∂y
∂b1

= w2σ
′(P)

∆b1 = (t− y)w2σ
′(P)

1

We will now proceed by making our one dimension into multidimensional
(with one data point). We will assume that x ∈ IRn, y ∈ IRm, and there are
k nodes in the hidden layer. Therefore, the network performs the following
sequence to forward propagate a data point:

• p = W1x + b1

where W1 is k × n, and b1 is a vector of biases in IRk.

• s = σ(p), where σ is applied elementwise to p

• y = W2s + b2

Now, compute the derivatives from the output to the input (this is back-
propagating the error):

1. The error at the output layer: ~δ2 = t− y

2. The error at the middle layer:

~δ1 = W T
2

~δ2 · σ′(p) = W T
2

~δ2 · s · (1− s)

where multiplication is done componentwise (look at the sizes: k ×
m, m× 1 times k × 1)

Now change the weights:

∆W1 = ~δ1x
T ∆W2 = δ2s

T

∆b1 = ~δ1 ∆b2 = ~δ2

Now we can minimize the error function (sum of squares error) using an
online version of gradient descent.
Numerical Example:

Let us construct a 2 − 2 − 1 network- That means there are 2 nodes at
the input layer (where the data comes in- This is the dimension of the input
data), there are 2 nodes in the hidden layer, and one output dimension.

We will use the standard sigmoidal function, f(x) = 1/(1 + e−x) so we
can take advantage of the derivative. Before going any further, you should
think about the dimensions of the parameters W1, W2, b1, b2.

We will forward propagate a data point x given the weights and biases
below:

x =

 0.5

1.5

 , t = 1.2, W1 =

 0.5 −0.1

−0.3 0.3

 , b1 =

 0.2

−0.2

W2 =

[
0.3 0.3

]
b2 = 0.8

2

Forward propagate the data point x:

σ(W1x + b1) = σ

 0.5 −0.1

−0.3 0.3

 0.5

1.5

 +

 0.2

−0.2

 =

σ

 0.3

0.1

 =

 0.5744

0.5250

We think of the vector [0.3, 0.1]T as the prestate P and the last vector above
[0.57, 0.52]T as the state, S, of the nodes in the hidden layer.

To finish,
W2S + b2 = 1.1298

Now we backpropagate the error. We wanted t = 1.2, so

• δ2 = t− y = 0.0702

• In Matlab notation for the element-wise multiplication,

δ1 = W T
2 δ2. ∗ σ′(P) = W T

2 δ2. ∗ S. ∗ (1− S) = 0.3

0.3

 (0.0702) .∗

 0.5744

0.5250

 .∗

 1

1

−
 0.5744

0.5250

 =

 0.0051

0.0052

And we update the weights and biases by the following changes. Note in
particular the sizes (dimensions) of the weights and biases:

∆W2 = δ2S
T = (0.0702)

[
0.5744 0.5250

]
=

[
0.0403 0.0368

]
∆W1 = δ1x

T =

 0.0051

0.0052

[
0.5 1.5

]
=

 0.0026 0.0077

0.0026 0.0079

and the changes in the biases:

∆b1 =

 0.0051

0.0052

 ∆b2 = 0.0702

Summary so far: We can construct a simple feedforward neural network
and minimize the error by updating the weights and biases by using the
backpropagation algorithm.

We see that a neural network is defined by its architecture. That means
defining the number of nodes in each layer, and the transfer function σ of
eacy node/layer.

Many people have the sigmoidal function on every node in the hidden and
output layers, but that is not necessary (that was part of Cybenko’s theorem
we discussed in class).

3

The following is the script file: backpropexamp1.m

%% Numerical example by hand- Neural net 2-2-1

lr=0.1; %learning rate, or alpha

W1=[0.5 -0.1;-0.3 0.3];

b1=[0.2;-0.2];

W2=[0.3 0.3];

b2=0.8;

x=[0.5;1.5];

t=1.2;

for j=1:10

%Forward propagation:

P=W1*x+b1;

S=sigma(P);

y=W2*x+b2;

err(j)=0.5*(t-y)^2;

%Backprop

delta2=t-y;

delta1=W2’*delta2.*S.*(ones(size(S))-S);

DeltaW2=delta2*S’;

DeltaW1=delta1*x’;

Deltab1=delta1;

Deltab2=delta2;

%Update parameters

W1=W1+lr*DeltaW1;

W2=W2+lr*DeltaW2;

b1=b1+lr*Deltab1;

b2=b2+lr*Deltab2;

end

plot(err)

4

Using Matlab and the feedforward neural network. Before we formally
get started, here’s a quick template:

P = [0 1 2 3 4 5 6 7 8 9 10]; %Domain is dim x numpts

T = [0 1 2 3 4 3 2 1 2 3 4]; %Range is dim x numpts

net = newff(P,T,5); %5 nodes in the hidden layer

%Set training parameters:

net.trainParam.epochs = 100; %How many times should we train?

net = train(net,P,T);

P1=linspace(0,10); %Get new domain data

Y = sim(net,P1); %Get new outputs

plot(P,T,’ro’,P1,Y)

The newff command

The newff command has many options (See the help file, doc newff). In
its basic form, it creates the network structure- It has a lot of sub-parts, but
only a few are of interest. Keeping with our usual notation, we have x ∈ IRn,
y ∈ IRm, and k nodes in the hidden layer.

• Our W1 is k × n and is net.IW{1,1}

• Our W2 is m× k and is net.LW{2,1}

• Our b1 is k × 1 and is net.b{1}

• Our b2 is m× 1 and is net.b{2}

Additionally, sometimes it is useful to change some of the parameters.
Here are a few popular choices:

• net.trainParam.epochs This is the number of times to go through
the training algorithm (default is 100).

• net.trainParam.goal Set the error goal- The default is 0.

• net.trainParam.show How often should the graph be updated? De-
fault: Every 25 iterations.

The current version of the Neural Network Toolbox also contains a method
for automatically sorting the data into training, validation (which we seldom
use), and testing. The parameters are shown below, with their default values:

• net.divideFcn = ’dividerand’ (Default- We won’t change it)

• net.divideParam.trainRatio = 0.6 (60% is the default)

• net.divideParam.valRatio = 0.2 (Uses a validation set)

• net.divideParam.testRatio = 0.2 (Uses a test set)

5

Bad things that might happen...

1. A particularly bad random set of initial weights and biases might be
assigned. You should always try training several times to make sure
that your error is as small as it should be- It is easy to get locked into
a local minimum!

2. Saturation. This is when the data is badly scaled. The problem has
to do with our sigmoidal function. An example might be in order:
Consider the table of values

x −1 1 5 8 10 50 5000

σ(x) 0.269 0.731 0.993 0.9997 1.00 1.00 1.00

We see that the transfer function begins to output 1 for ANY large
number, so we say that it has lost its ability to distinguish between
input patters (the function has become saturated). The same behavior
happens for very negative input values as well.

If your network begins to output the same numbers for wildly different
inputs, then this is probably the reason (the weights could be large-
See below).

3. Your data may be badly scaled. For example, suppose you have 4
dimensional input, and it represents temperatures from 200 degrees to
300 degrees in the first dimension, error values from 0.0005 to 0.001
in the second dimension, altitudes like 2000 to 5000 feet in the third
dimension, and integers from 1 to 10 in the fourth. Here are some
samples:

(250, 0.0001, 2450, 6)

The second column will disappear in terms of the network- the error
minimization will end up focusing almost entirely on the third column.

If possible, try to keep all of the scalings similar. For example, scale so
that each dimension has mean zero and unit standard deviation (mean
subtract and scale by the inverse of the standard deviation).

4. Too many nodes in the hidden layer: Use the test set/validation set
to be sure you’re not memorizing the data (the default settings work
pretty well).

5. You should take a quick look at the magnitude of the numbers in the
weights and biases- They should all be “reasonable”- Numbers that
are out of scale with respect to the others should be suspect (and
can lead to saturation). Recommended: hintonw(net.IW{1,1}) and
hintonw(net.LW{2,1}). The colors are negative (versus positive), and
the sizes of the squares are related to the magnitude of the numbers.

6

