
Chapter 10

Linear Neural Networks

In this chapter, we introduce the concept of the linear neural network.

10.1 Introduction and Notation

1. The linear neural “cell”, or “node” has the schematic form as shown in
Figure 10.1 where information flows from left to right in the following way:

• Present real numbers x1, . . . , xn to the “input layer”, as shown.

• The “w1j” corresponds to a “weight”. A weighted edge corresponds
to multiplication by w1j . In general, weight wij corresponds to the
edge going FROM node j TO node i.

• At node L, the sum of the incoming signals is taken, and added to a
value, b. We think of b as the “resting state” of the cell.

• The result is passed along the axon.

2. Mathematically, the end result is:

x 7→ (w11, w12, . . . , w1n)

















x1

x2

...

xn

















+ b

or
x 7→ w11x1 + w12x2 + . . . + w1nxn + b

which we can visualize as an n−dimensional plane, with normal vector
(w11, . . . , w1n)T .

3. We therefore can think of a linear neural node as an affine map.
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Figure 10.1: The Linear Node.

Figure 10.2: The Linear Neural Network is an affine mapping from IRn to IRk

4. We can hook multiple computational nodes together to obtain a linear

neural network, as shown in Figure 10.2.

5. Exercise: Show this mapping corresponds with the affine transformation
Ax + b, for an appropriate matrix A and vector b.

6. Theorem: A multilayer linear neural network is equivalent to a single
layer linear neural network.

Proof: Suppose that the network has “n” nodes in the input layer, and has
N1, N2, . . . , Nk nodes in the k hidden layers, with m nodes in the output
layer. Then the mapping from the input layer to the first layer is an affine
mapping from IRn to IRN1 :

x 7→ A1x + b1

where A is N1×n. Going to the next layer is realized as an affine mapping
from IRN1 to IRN2

A2(A1x + b1) + b2
.
= Â1x + b̂1

Continuing to the end, we get one affine mapping from IRn to IRm:

Âx + b̂
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where Â is m × n, and b̂ is m × 1.

7. The affine problem Ax+b = y is equalivalent to solving a linear problem,
Âx̂ = y.

8. This technique (affine to linear by adding dimensions) is used extensively
in computer graphics. See, for example, the section on homogeneous co-
ordinates from David Lay’s Linear Algebra.

9. Example: Suppose that we have the 2 × 2 affine problem:





a1 a2

a3 a4









x1

x2



 +





b1

b2



 =





y1

y2





This is equivalent to the linear problem:





a1 a2 b1

a3 a4 b2















x1

x2

1











=





y1

y2





If we only want a two dimensional output, we can leave off the last row
(the last row is there to do “perspective projections”).

10. Exercise: Show that the system of affine equations: AX + B = Y is also
equivalent to a linear problem: ÂX̂ = Y

10.2 Training a Linear Net

“To Train” a linear network is to determine weights and biases that best (in
the sense of some error) match a given input-output set. There are two distinct
types of training: Training when all data is available, and on-line training. If
all of the data is available, we will see that “training” corresponds to computing
a pseudoinverse. On-line training is a training algorithm that partially updates
the weights and biases at each data point, and we slowly evolve the network
to best match the data. It is in the latter sense that we can describe a linear
network as “adaptive”.

1. Definition: “ADALINE”: Adaptive Linear Node, “MADALINE”: An
Adaptive Linear Network.

2. Training with all the data. Let W be the matrix of weights for the
linear neural net, and let Ŵ be the augmented matrix with the biases in
the last column. Let X be the matrix of data1, and X̂ be the augmented

1If we use a bias, b, we don’t have to mean subtract the data
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matrix with ones in the bottom row. Then the mapping from IRn to IRk

is given by:
Wx(i) + b

which in linear form is given matrix wise:

Ŵ X̂

so that to train a linear neural network is to solve:

Ŵ X̂ = Y or X̂T ŴT = Y T

In this form, we are solving:

AX = B

for X. In Matlab, we have some options here:

• X=A\B or in original notation: W=Y/X

• X=pinv(A)*B or W=Y*pinv(A)

• Using the SVD, use can construct the pseudoinverse manually. Here
are the commands to solve AX = B for X :

[U,S,V]=svd(A);

ss=diag(S);

%FIND THE DIMENSION, k using the singular vals in ss

%Once that is determined, continue:

invS=diag(1./ss(1:k));

pinvA=V(:,1:k)*invS*U(:,1:k)’;

X=pinvA*B;

3. Remark: Which method is better? Between Matlab’s commands, the
backslash command is more efficient that the pseudoinverse command.
This is because the pseudoinverse command first computes the actual
pseudoinverse, then performs the matrix multiplication. On the other
hand, the backslash command takes both matrix X̂ and Y into account.

If you want complete control as to the rank of X̂ (i.e., if there’s a lot of
noise), then you may consider using the SVD so that you can see what
the variances look like.

4. Exercise: Find the linear neural network for the mapping from X to Y

(data is ordered) given below. Use Matlab’s matrix division to solve it.

X =











2

2



 ,





1

−2



 ,





−2

2



 ,





−1

1











Y = {−1, 1,−1, 1}

Verify that the weights are approximately: −0.1523,−0.5076 and the bias
is: 0.3807. The seperating line is the set of points that map to 0:

y = −

(

−0.1523

−0.5076

)

x −

(

0.3807

−0.5076

)
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5. Pattern Classification: In the general pattern classification problem,
we know the class labels for each data point, but these will not have
meaningful numerical values. For example, if we have classes 1, 2, . . . , k,
does that necessarily mean that class 2 is “closer” to class 3 than class
10? Does an output of 3.5 mean that the desired target is between classes
3 and 4? We run into interpretation problems.

One method for labeling that may be preferable is to set the kth pattern
label to ek. In the two label problem, the output for data in pattern 1
would be set to (1, 0)T and for pattern 2 would be (0, 1)T . This has an
added benefit: we can interpret (a, b) → ( a

a+b
, b

a+b
)T as a probability.

That is, x has probability a
a+b

of being in pattern 1, and probability b
a+b

of being in pattern 2.

6. Example: The following example gives the solution to the pattern classifi-
cation problem from Chapter 1 (See Figure ??). The first set of commands
creates the data that we will classify. This script file will reproduce (some
of the data is random) the image in Figure 10.3.

1 X1=0.6*randn(2,300)+repmat([2;2],1,300);

2 X2=0.6*randn(2,300)+repmat([1;-2],1,300);

3 X=[X1 X2];

4 X(3,:)=ones(1,600);

5

6 Y=[repmat([1;0],1,300) repmat([0;1],1,300)];

7 C=Y/X;

8

9 %Plotting routines:

10 plot(X1(1,:),X1(2,:),’o’,X2(1,:),X2(2,:),’x’);

11 hold on

12 n1=min(X(1,:));n2=max(X(1,:));

14 t=linspace(n1,n2);

15 L1=(-C(1,1)*t+(-C(1,3)+0.5))./C(1,2);

16 L2=(-C(2,1)*t+(-C(2,3)+0.5))./C(2,2);

17 plot(t,L1,t,L2);

• Lines 1-3 set up the data set X . We will take the first 300 points
(X1) as pattern 1, and the last 300 points as pattern 2.

• Line 4 sets up the augmented matrix for the bias.

• Line 6 sets up the targets.

• Line 7 is the training. The weights and biases are in the 2×3 matrix
C.

• Line 10: Plot the patterns

• Line 12-17: Compute the seperating lines.



162 CHAPTER 10. LINEAR NEURAL NETWORKS

−1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5 4
−4

−3

−2

−1

0

1

2

3

4

Figure 10.3: The Two Pattern Classification Problem from Chapter 1. The line
is the preimage of (0.5, 0.5)T .

• Line 18: Plot the seperating lines. (They are identical in theory, in
practice they are very, very close).

7. Online Training We will derive the Widrow-Hoff Learning Rule

for one dimensional outputs, then describe the generalization to higher
dimensional output.

We can describe the Widrow-Hoff Learning rule as an approximation to
minimizing a function via gradient descent.

8. Remark: As we discussed in Chapter 2, the direction of largest decrease
of a function f : IRn → IR is in the direction of the negative of the gradient
of f . If we view f as our Error Function, performing gradient descent will
ideally result in minimizing the error.

9. General Gradient Descent Let x ∈ IRn, and let f : IRn → IR. Then
performing gradient descent is performed by moving (updating) the orig-
inal x in the following way:

x → x + α∇f(x)

Therefore, the Widrow-Hoff rule is an iterative procedure requiring an
extra parameter. This parameter gives how far in the direction of the
negative gradient we travel before stopping to recompute. In neural net-
work terminology, this parameter is called the learning rate.
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10. Remark: For more on the numerical aspects of general gradient descent
and its implementation in C, consult “Numerical Recipes in C” [29].

11. Derivation of the Widrow-Hoff rule: Let k = 1, 2, . . . , p index the
data. Let tk denote the target for xk, and let yk denote the output of the
linear neural network:

wT xk + b = yk ≈ tk

Then we wish to minimize the mean square error with respect to the
weights and biases:

Emse =
1

p

p
∑

k=1

e2(k)
.
=

1

p

p
∑

k=1

(tk − yk)2

12. Exercise: Verify that:

∂e2(k)

∂w1j

= 2e(k)
∂e(k)

∂w1j

and
∂e2(k)

∂b
= 2e(k)

∂e(k)

∂b

13. Exercise: Show that:

∂e(k)

∂w1j

= −xj(k) and
∂e(k)

∂b
= −1

where xj(k) refers to the jth coordinate of the kth data point.

14. Remark: The standard way of performing gradient descent would mean
that we adjust the vector w and scalar b by:

New w1j = Old w1j + α
∂Emse

∂w1j

and New b = Old b + α
∂Emse

∂b

where α is our learning rate. We will estimate Emse at data point k:

w1j(k + 1) = w1j(k) + α
∂e2(k)

∂w1j

and b(k + 1) = b(k) + α
∂e2(k)

∂b

15. Exercise: Show that the Widrow-Hoff rule is given by:

w(k + 1) = w + 2α(tk − yk)x(k)

b(k + 1) = b(k) + 2α(tk − yk)

16. Extensions: For multidimensional output, this update extends to:

W (k + 1) = W (k) + 2αe(k)
(

x(k)
)T

b(k + 1) = b(k) + 2αe(k)
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17. Widrow-Hoff in Matlab

For easy programming, we’ll call 2α = lr for learning rate. Then, the
function call to train the linear neural network will look like:

function [W,b,err]=wid_hoff1(X,Y,lr,iters)

%FUNCTION [W,b,err]=wid_hoff1(X,Y,lr,iters)

%This function trains a linear neural network

%using the Widrow-Hoff training algorithm. This

%is a steepest descent method, and so will need

%a learning rate, lr (for example, lr=0.1)

%

% Input: Data sets X, Y (for input, output)

% Dimensions: number of points x dimension

% lr: Learning rate

% iters: Number of times to run through

% the data

% Output: Weight matrix W and bias vector b so

% that Wx+b approximates y.

% err: Training record for the error

%It’s convenient to work with X and Y as dimension

%by number of points

X=X’;

Y=Y’;

[m1,m2]=size(X);

[n1,n2]=size(Y);

%Initialize W and b to zero

W=zeros(n1,m1);

b=zeros(n1,1);

for i=1:iters %Number of times through data

for j=1:m2 %Go through every data point

e=(Y(:,j)-(W*X(:,j)+b)); %Target - Network Output

dW=lr*e*X(:,j)’;

W=W+dW;

b=b+lr*e;

err(i,j)=norm(e); %Store error for later

end

end

18. We could also add a “momentum” term to try to speed up the gradient
descent. A useful example of how the learning rate and momentum effect
the convergence can be found in Matlab: nnd10nc, which we will also
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look at in the next section. The general form of gradient descent with a
momentum term µ and learning rate α is given by:

∆x = µ∆x + (1 − µ)α∇f(x) (10.1)

x = x + ∆x (10.2)

From these equations, we see that if the momentum term is set so that
µ = 0, we have standard gradient descent (which may be too fast), and if
we set µ = 1, then since ∆x is usually set to 0 to start, then ∆x will be
zero for all iterations.

10.3 Time Series and Linear Networks

We’ve already seen one application of linear networks: If data is linearly seper-
able, then a linear network can do pattern classification. Furthermore, if the
input-output relationship is linear, then a linear net can approximate that re-
lationship. Here, we will see that a linear neural network can be used in signal
processing.

1. Definition: A time series is a sequence of real (or complex) numbers. We
denote a time series in the usual way:

X = {x(1), x(2), x(3), . . . , x(t), . . .}

2. Definition: A tapped delay line with k taps is constructed from a time
series:

x̂1 =

















x(k)

x(k − 1)
...

x(1)

















, x̂2 =

















x(k + 1)

x(k)
...

x(2)

















, . . .

3. Remark: This is also called a time series with lag k.

4. Remark: This is also called an embedding of the time series to IRk.

5. Remark: In Matlab, we can do the embedding in the following way. Here,
we embed to IR5, columnwise:

Q=length(X);

P=zeros(5,Q);

P(1,2:Q)=X(1:(Q-1));

P(2,3:Q)=X(1:(Q-2));

P(3,4:Q)=X(1:(Q-3));

P(4,5:Q)=X(1:(Q-4));

P(5,6:Q)=X(1:(Q-5));
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Look these lines over carefully so that you see what is being done- we’re
doing some padding with zeros so that we don’t decrease the number of
data points being used.

6. Exercise: Use the last remark as the basis for a function you write, call
lag, whose input is a time series (length n), and input the number of taps,
k. Output the k × n matrix of embedded points.

7. Definition: A filter with k−taps is a function on the time series so that:

xi = f(xi−1, xi−2, . . . , xi−k)

8. Remark: We can think of a filter as performing a prediction on xi using
the past k time series values.

9. Definition: A linear filter will have the form:

wT x + b = xi

where w are the weights, b is the bias, and x = (xi−1, xi−2, . . . , xi−k)T .

10. Remark: In signals processing dialect, the linear filter above is called a
Finite Impulse Response (FIR) filter.

11. Exercise: Run the demonstration applin1. The filter will be constructed
using Matlab’s newlind command, which uses a least squares approxima-
tion. Try solving the problem directly using the P and T data sets that
were constructed by the demo, and compare the weights, bias and error.

12. Application: Noise removal

• Background: There is a signal that we would like to have as pure as
possible, but there is some noise contaminating it. For example, a
pilot’s voice may be contaminated by engine noise. We would like to
remove the noise using a linear neural network. We assume that the
noise source is available for sampling, but the noise contamination is
an unknown function of the noise source.

• GOAL: Filter out the noise, given only access to the noise source.

• Idea for the solution:

Suppose that the noise source is input (using time delays) to a linear
filter. What can the linear network do? It can only form linear com-
binations of its past values, and therefore can only estimate signals
that are (at least) correlated to the noise source. The pilot’s voice
(or signal of interest) should NOT be correlated to the noise.

If we ask a linear network to model the noise PLUS the pilot’s voice,
the linear network will only be capable of modeling the noise.

This gives us an easily implemented algorithm:
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Let vk be the main signal (or voice) sampled at time k. Let nk be
the sample of the noise source at time k. The contaminated signal is
then: vk + f(nk), where f is a (unknown) model of how the noise is
transformed.

We will design the linear network so that:

– INPUT: nk, nk−1, . . . , nk−(m−1) (m lags)

– DESIRED OUTPUT: vk + f(nk) = ck

– ACTUAL NETWORK OUTPUT: ak

Algorithm: At time k, input the lagged vector, and compute ak. The
error is ak − ck. Use the Widrow-Hoff learning rule to update the
weights and bias.

• Use either Matlab’s built in training routines (exmained in the next
section), or modify wid_hoff1.m by changing the error measure.

• A sample is given in nnd10nc and nnd10eeg, where there is an inter-
active selection of the learning rates and the results. Kind of fun!

10.4 Script file: APPLIN2

This program shows what an adaptive network can do, versus a network that
was trained using least squares, with no additional training. We will see that an
adaptive network can respond rapidly to a changing input signal. The learning
algorithm is Widrow-Hoff, so we also need a learning rate.

The input will be a signal that is static for the first 4 seconds of input, then
changes period for the last two seconds. The linear network will be trained to
predict xk from xk−1, xk−2, . . . , xk−5.

The following is Matlab’s script file applin2 with my line numbers and com-
ments (it’s so short because I’ve removed their comments and plotting routines).

1 time1 = 0:0.05:4; % from 0 to 4 seconds

2 time2 = 4.05:0.024:6; % from 4 to 6 seconds

3 time = [time1 time2]; % from 0 to 6 seconds

4

5 T = con2seq([sin(time1*4*pi) sin(time2*8*pi)]);

6 P = T;

7

8 lr = 0.1;

9 delays = [1 2 3 4 5];

10 net = newlin(minmax(cat(2,P{:})),1,delays,lr);

11 [net,y,e]=adapt(net,P,T);

Program Comments

• Lines 1-3 set up a varying time scale to create a sample data set.

• Line 5 does two things. The first thing:
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[sin(time1*4*pi) sin(time2*8*pi)]

sets up the signal, which will be input to the network, then converts the
vector to a “cell array”. The neural network has been written to work
with this data type.

• Line 6: The input pattern is the “same” as the output pattern (but notice
the delays defined in Line 10).

• Line 8: Set the learning rate for steepest descent.

• Line 9: Set the delays. Notice that this means that the lag vector is taken
as we’ve stated earlier. If we wanted xk to be a function of xk, xk−3, xk−5,
this vector would be: [0 3 5].

• Line 10: Creates and initializes the linear neural network. The minmax(cat(2,P{:}))
command is used to define the minimum and maximum values of the input
for each dimension. To see why we are using the cat command, see the
last comment below. For more options and other types of arguments type
help newlin

• Line 11 trains the network using Widrow-Hoff. It returns the network
output, y and the error e as cell arrays. To plot them or work with
them, you can convert them back into regular vectors with the command
cat(2,e{:})

10.5 Matlab Demonstration

Here we describe the Matlab demonstration nnd10nc, which demonstrates the
noise removal technique using a two node linear neural network. The screen shot
is given in Figure 10.4, where we see a main viewing screen, a smaller screen
and two scroll bars.

In the main viewing window, one can see the effect of the noise removal. In
the smaller screen, one can see the effects of the learning rate and momentum
terms on the convergence of the gradient descent algorithm. The lines on the
screen correspond to the level curves of the error function, whose global mini-
mum occurs at the center (this graph is only possible due to only having two
input nodes).

Recall that, if the momentum term is set to 1, then there is no gradient
descent, and if the momentum term is set to 0, we have a standard gradient
descent with learning rate. Note that if the learning rate is set too high, we can
miss the minimum!

Also see the related demonstration, nnd10eeg, which uses a real Electroen-
cephalogram trace!



10.6. SUMMARY 169

Figure 10.4: Screenshot of the Matlab toolbox demonstration, nnd10nc.

10.6 Summary

A linear neural network is an affine mapping. The network can be trained two
ways: Least squares (using the pseudoinverse) if we have all data available, or
adaptively, using the Widrow-Hoff algorithm, which is an approximate gradient
descent on the least squares error.

Applications to time series include noise removal and prediction, where we
first embed the time series to IRk. These applications are widely used in the
signals processing community.
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