
Chapter 12

Neural Networks

The term “neural network” has come to be an umbrella term covering a broad
range of different function approximation or pattern classification methods.

The classic type of neural network can be defined simply as a connected
graph with weighted edges and computational nodes. Let us summarize those
we have seen up to this point:

• The Linear Neural Net: x → Ax + b.

• Kohonen’s SOM: The graph is the network topology, and the units undergo
competition.

• Neural Gas: Same interpretation as Kohonen’s SOM.

• Radial Basis Functions: Each “center” represents a computational unit,
and the output of unit i was x → φ(‖x − c(i)‖)

In the case of the Linear Neural Net and the RBF, network training was cast as
solving a least squares problem, so that we could use features of linear algebra
to solve for the best parameters.

In this chapter, we look at the classic workhorse of the neural network in-
dustry: The three-layer, feed-forward neural network.

As with the RBF, we will see that the three-layer, feed-forward network is
capable of performing function approximation arbitrarily well when the domain
is a compact subset of IRn.

12.1 Biological Motivation

The neuron is the basic building block of the central nervous system. There
are many different types of neurons, but each can be anatomically broken down
into three parts: the dendrites, the cell body, and the axon. Information flows
from the dendrites to the cell body through the axon to a synaptic junction
connecting to the dendrite to the next neuron.

195

196 CHAPTER 12. NEURAL NETWORKS

The synaptic junction is made up of the presynaptic node (the end of an
axon), the postsynaptic node (the beginning of a dendrite), and the “empty
space”, which is the synapse.

For the purposes of our basic mathematical model, we will assume the fol-
lowing processing features that a neuron makes to information (we will refer to
Neurons as Nodes in what follows):

1. As information flows across a synapse, information can be amplified, inhib-
ited, or re-polarized. If we let x denote the signal, then synaptic processing
is represented as a multiple of x:

x → wx

where w will be referred to as a weight. Since there are multiple incoming
signals, we denote by wij the weight connection from Node j to Node i.

2. At the cell body, information from across the dendrites is collected and
processed in the following way.

(a) The incoming signals are summed. Let j = 1..m denote the index of
the signal coming to Node i:

m∑

j=1

wijx

(b) This quantity is added to the resting state of the cell, which is as-
sumed to be constant:

m∑

j=1

wijx + bi

and bi is called the bias of the Node. The summed quantity is referred
to as the Prestate of the Node.

(c) Biologically, we assume an “all or nothing” response to the incoming
signal. That is, if the signal strength is above a certain threshold,
the neuron fires. If not, then the information is not passed along.
Mathematically, we use a step function, with the step at 0. This is not
a differentiable function, however. We substitute for the step function
a “sigmoidal” function, σ(x). This is defined to be a monotonically
increasing function so that

lim
x→−∞

σ(x) = A lim
x→∞

σ(x) = B

where A and B are constants. Common choices for the sigmoidal
function include:

i. The inverse tangent:

σ(x) = atan(x)

12.1. BIOLOGICAL MOTIVATION 197

ii. The exponential sigmoidal function:

σβ(x) =
1

1 + e−βx

We will use the latter choice, since the computation of its derivative
is especially easy to implement on the computer:

σ′
β(x) =

βe−βx

1 + e−βx
= βσ(x)(1 − σ(x))

Other functions that transfer the incoming signal out to the axon
are possible. At times, we will use the following, denoted by t(x) as
transfer functions:

i. The Linear Node

t(x) = x

ii. The Circular Node (two inputs, two outputs per node):

t(x, y) =

(

x
√

x2 + y2
,

y
√

x2 + y2

)

iii. The Spherical Node (three inputs, three outputs):

t(x, y, z) =

(

x
√

x2 + y2 + z2
,

y
√

x2 + y2 + z2
,

z
√

x2 + y2 + z2

)

See [15, 16] for examples of how to implement the last two transfer function
types.

3. The axon sends along the information to the synapse.

In summary, we have the following information processing for the ith single
node:

x →

m∑

j=1

wijx + bi

︸ ︷︷ ︸

Prestate

→ σ

m∑

j=1

wijx + bi

︸ ︷︷ ︸

State

In vector form,

x → (wi)
Tx + bi → σ

(
(wi)

Tx + bi

)

So that, taking x ∈ IRN , and having k Nodes,

x →
(

(W (0))Tx + b
)

→ σ
(

(W (0))Tx + b
)

198 CHAPTER 12. NEURAL NETWORKS

where

W (0) = (w1, w2, . . . , wk) b =

b1

b2

...

bk

and σ operates on a vector or matrix component-wise. Also note that, if σ were
a linear function, then the neural network would be linear.

12.2 The Three Layer Feedforward Neural Net-

work

The usual method of describing a neural network’s architecture is to use a con-
nected graph with computational nodes. The basic feedforward neural network
uses three layers of “nodes”. The first layer is the input layer, so the number of
nodes is equal to the dimension of x, and the transfer function is linear.

The hidden layer contains the nonlinear transfer function, and there is a
choice as to how many nodes one includes in the hidden layer. We assume there
are k nodes in the hidden layer.

The output layer again has a linear transfer function, and there are as many
nodes here as there are output variables. Each edge of the graph is weighted,
and we refer to edges from the input layer to the hidden layer as the matrix

W (0) =
[

W
(0)
ij

]

i=1:n(1), j=1:n(0)

where n(i) is the number of nodes in Layer i, and

W (1) =
[

W
(0)
ij

]

i=1:n(2), j=1:n(1)

so that W k
ij refers to the weight in the kth layer, going from Node j in the kth

layer to Node i in the k + 1st layer.
There are also vectors of biases associated with the hidden layer, and output

layer, respectively:
b(0) and b(1)

For the purposes of the backpropagation algorithm given later, note that
the biases can also be represented as one additional node in the input and
hidden layers, with constant transfer function, σ(x) = 1. We will adopt this
notation, and suppress the bias specification in Section 4.2.1. Figure 12.1 shows
the graphic layout of the three layer, feedforward neural network.

The purpose of this network is to provide an approximation to an arbitrary
continuous function, F , defined on a compact domain X , and we will use the
notation y = F (x), where x ∈ IRN and y ∈ IRM . The network will render the

12.2. THE THREE LAYER FEEDFORWARD NEURAL NETWORK 199

h h h hq q q q q q q q input layer

x1 xN

h h h h h hq q q q q q q q hidden layer

h h h hq q q q q q q q
y1 yM

output layer

Q
Q

Q
Q

Q
Q

Q
Q

Q
Q

Q
Q

S
S

S
S

S
S

S
S

S
S

S
S

S
S

S
S

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

S
S

S
S

S
S

S
S

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

!!!!!!!!!!!!!!!!!!!

�����������������������

!!!!!!!!!!!!!!!!!!!

�����������������������

�������������������������������

PPPPPPPPPPPPPPPPPPPPPPP

aaaaaaaaaaaaaaaaaaa

Q
Q

Q
Q

Q
Q

Q
Q

Q
Q

Q
Q

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

PPPPPPPPPPPPPPPPPPPPPPP

aaaaaaaaaaaaaaaaaaa

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

Q
Q

Q
Q

Q
Q

Q
Q

Q
Q

Q
Q

aaaaaaaaaaaaaaaaaaa

PPPPPPPPPPPPPPPPPPPPPPP

�����������������������

!!!!!!!!!!!!!!!!!!!

�
�

�
�

�
�

�
�

�
�

�
�

S
S

S
S

S
S

S
S

Q
Q

Q
Q

Q
Q

Q
Q

Q
Q

Q
Q

�
�

�
�

�
�

�
�

S
S

S
S

S
S

S
S

aaaaaaaaaaaaaaaaaaa

PPPPPPPPPPPPPPPPPPPPPPP

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

�������������������������������

�����������������������

!!!!!!!!!!!!!!!!!!!

�
�

�
�

�
�

�
�

S
S

S
S

S
S

S
S

Figure 12.1: The neural network architecture.

approximation in terms of a sigmoidal basis so that the approximation to F is
given pointwise by:

y(i) = F (x(i)) ≈
(

W(1)σ
(

W(0) · x(i) + b(0)
)

+ b(1)
)

(12.1)

In a paper of fundamental importance, Cybenko [7] shows that sums of the
form in equation (12.1) are dense in the space of continuous functions defined
on the unit cube. In other words, a neural network is capable of approximating
any continuous function arbitrarily well by increasing the number of nodes in
the hidden layer. As the number of nodes in the hidden layer increases, the
error between the network approximation and the continuous function goes to
zero. This is very significant for several reasons:

• It gives us a theoretical framework from which to work.

• The proof of this theorem ties neural networks to the classical approaches
to function approximation in mathematics.

• It solves one of Hilbert’s problems from the turn of the last century. Kol-
mogorov had given the first proof in the 1950’s, but it is still not clear
that the functions he used can be implemented in a computer algorithm.

• The proof revitalized neural network research. Prior to this, research had
been stagnant after the discovery that the first neural networks (in the
1960’s) were incapable of modeling certain standard functions (the XOR
function). We know now that this was because the first networks only
worked on linearly seperable data.

200 CHAPTER 12. NEURAL NETWORKS

• Although we have taken outrageous liberties (biologically speaking) in our
model, the model shows that a very simple structure is capable of very
complex behavior.

In fact, there are more general results that can be found in [13, 14, 11, 12,
9, 10] and more specifically, they show that a neural approximation not only
approximates the function, but can also simulatenously approximate the first m

derivatives using the same functional parameters.

12.3 Training and Error

Theoretically, we have now seen the neural network as a “Universal Function
Approximator”. The real question now is, given an input and output set, how
does one build the neural net? This question can be reframed as: Find the
weights wi

jk and biases bi
j that perform a desired input-output. This process is

also known as network training.
For a fixed value of the parameters in the matrices W (i) and biases b(i), the

network outputs a smooth function in x. As mentioned previously, we adopt
the notation of including the biases in the parameters W (i), and add an extra
node on the hidden and input layers.

Define the mean square error of the approximation, given a set of parameters
{W (0), W (1)}, as:

E(W (0), W (1)) =
1

2|X |

|X|
∑

i=1

‖F (x(i)) −
(

W(1) σ
(

W(0) · x(i)
))

‖2
2 (12.2)

where |X | denotes the number of points in the data set X . Then E is a smooth
function of the weights and biases, so that it can be minimized. From the
method of steepest descent, we update the weights:

W
(i)
jk (t + 1) = W

(i)
jk (t) + α(t)d(t) (12.3)

until the error has become smaller than a prescribed value. For the standard
gradient descent, for example, we have

d(t) =
∂E

∂W
(i)
jk

(t)

How we find the value of α(t) and the definition of d(t) is where the diver-
gence in training algorithms occurs. There are many algorithms built especially
for this purpose, such as Line Minimization. Other update methods can be
applied, since training is a general, unconstrained optimization problem:

min
W (0),(1)

E

Most optimization algorithms will require that we obtain expressions to com-
pute the partial derivatives of E with respect to the weights and biases. It is

12.3. TRAINING AND ERROR 201

fortunate that, for large networks, there is a recursive algorithm to accomplish
this. This will be discussed in the next section. First, we introduce some nota-
tion that will make the algorithm more clear.

Define the prestate for layer i, Node j at time t:

P i
j =

n(i−1)
∑

k=1

W i−1
jk Si−1

k , for i = 1 . . . L

where Si
j is the State of Node j on layer i, which is

Si
j =

σ
(
P i

j

)
i > 0

x i = 0

12.3.1 Backpropagation of Error

We now detail a recursive algorithm, known as the backpropagation of error
[1], which gives an efficient method for computing the partial derivatives for
training (see Equation (12.3)).

The goal is to compute
∂E

∂W i−1
jk

for each i, j, k.
From the chain rule, we can write

∂E

∂W i−1
jk

=
∂E

∂P i
j

·
∂P i

j

∂W i−1
jk

which we can re-express, using:

∂P i
j

∂W i−1
jk

= Si−1
k

∂P i+1
j

∂P i
k

= W i
jkσ′(P i

k)

and defining:

δi
j =

∂E

∂P i
j

Then we have:
∂E

∂W i−1
jk

= δi
j · S

i−1
k

So, we need an algorithm to compute δi
j .

For the output layer (L), with aribtrary transfer function σ,

δL
j =

∂E

∂PL
j

=
∂E

∂SL
j

∂SL
j

∂PL
j

= σ′(PL
j)

∂E

∂SL
j

202 CHAPTER 12. NEURAL NETWORKS

where ∂E
∂SL

j

is computed from the error by substituting SL
j into Equation (12.2):

E =
1

|X |

2|X|
∑

i=1

‖y(i) −

S
(L)
1

...

S
(L)
m

‖2
2

which implies that:

∂E

∂SL
j

=
−1

|X |

|X|
∑

i=1

|y
(i)
j − SL

j | (12.4)

For the hidden nodes,

δi
j =

∂E

∂P i
j

=

n(i+1)
∑

k=1

∂E

∂P i+1
k

∂P i+1
k

∂P i
j

Noting
∂P

i+1
k

∂P i
j

= W i
kjσ

′(P i
j), we obtain:

δi
j = σ′(P i

j)

n(i+1)
∑

k=1

∂E

∂P i+1
k

W i
kj

Which, from our definition of δi
j , is recursively defined as:

δi
j = σ′(P i

j)

n(i+1)
∑

k=0

δi+1
k W i

kj (12.5)

This can be interpreted as a backpropagating the δi
j backwards through the

network. The algorithm is summarized as:

Algorithm 12.3.1 The Backpropagation Algorithm

1. Forward propagate all the x’s, keeping track of the error.

2. Compute δL
j , for j = 0 . . .M − 1 using:

δL
j = σ′(PL

j)
∂E

∂SL
j

3. Compute all other δ’s:

δi
j = σ′(P i

j)

n(i+1)
∑

k=0

δi+1
k W i

kj

4. Compute:
∂E

∂W i−1
jk

= δi
j · S

i−1
k

for i = 1 . . . L, j = 1 . . . n(i + 1), and k = 1 . . . n(i).

12.4. NEURAL NETWORKS AND MATLAB 203

12.3.2 Nonlinear Optimization Techniques

There are many methods to choose from, and some are included below:

• Steepest Descent (with variations on how to compute α)

• Newton’s Method (This is indirect - we solve for where f ′(x) = 0).

• Conjugate Gradient (Search along the eigenvectors of the Hessian).

• Levenburg-Marquardt (A combination of the methods above).

To really study all of these techniques would take us too far afield in this
course. Any text on nonlinear optimization (as well as “Numerical Recipes for
C”) will cover the basic ideas.

The introduction of a nonlinear optimization technique is the primary reason
we will use Matlab to perform our neural network training. Programming these
techniques can be a delicate task! For our purposes, Levenburg-Marquardt is
more than adequate.

12.4 Neural Networks and Matlab

Matlab has set up a very general data structure by which to construct and
train almost any type of neural network. Here we focus on the construction and
operation of the three-layer feed-forward network.

Because the data structure is so general, building and training a neural
network is broken into multiple stages.

• Identify the network architecture. This includes constructing neural lay-
ers, connections, identifying the transfer functions for each node. Fur-
thermore, one must define the error measure (or performance index), the
training function, and how one wishes to compute a Jacobian matrix. This
step would be extremely tedious if we had to do it every time! Matlab has
several built in architectures, and we’ve dealt with a few. For example:

– newsom initializes Kohonen’s SOM.

– newlin initializes a linear neural network.

– newrb initializes a radial basis function network.

– newrbe initializes (and trains) an exact RBF.

The new function here is newff.

• Train the network. This is performed (for all network types) by the com-
mand: net=train(net,X). The specific functions and training parameters
have already been set up by the initialization process.

• Simulate the network with new data. Again, this is performed generically
by: Y=sim(net,X). The specific functions and parameters have been set
in the network data structure.

