
Chapter 7

A Best Nonorthogonal

Basis

In this section, we examine a particular question whose solution will involve
getting an optimal nonorthogonal basis, which is quite contrary to our earlier
chapters- in fact, the reader should ask why we would ever want to use a non-
orthogonal basis when it would be quite easy (using Gram-Schmidt) to construct
an orthogonal version of the same basis.

To answer this question, consider the synthetic data example in Figure 7.1.
Here there is a definite “natural” basis appearing in the data- and the basis
vectors are not orthogonal. While the data was synthetic, we do get similar
types of data appearing in the problem of Blind Signal Separation. Consider
the following tasks:

1. We have a patient that is pregnant. Our overall goal is to listen to the
fetus heartbeat, but when we try, the sound of the mother’s heartbeat is
mixed with the heartbeat of the fetus. Symmetrically, if we were to try to
listen to the heartbeat of the mother, we would also hear the heartbeat
of the fetus. Is it possible to gather these sounds on microphones and
manipulate the data so that the mother’s (or fetus) heartbeat has been
isolated?

2. We have two microphones placed at random, but distinct, places in a
room. We also have two people speaking in the room (the placement of
the people is distinct from the placement of the microphones- we do not
assume that each microphone is placed in front of each speaker). Is it
possible to manipulate the two mixtures of voices so that we can isolate
each speaker’s voice?

The answer lies in a fairly new technique called Independent Component

Analysis (ICA) (versus what we studied earlier, principal components analysis,
or PCA). In ICA, we assume that we have some underlying, statistically inde-
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Figure 7.1: A synthetic data example of a naturally emerging set of basis vectors
from data- These are not orthogonal.

pendent, processes and that we are observing mixtures of these processes. Our
goal is to separate the mixtures.

This problem is also known as Blind Signal Separation, where we assume
some unknown mixture of signals, and we attempt at separating them.

This process (the problem and the solution) can also be framed in other
terms- we will focus on the geometric meaning of the problem, and will solve it
using the techniques of linear algebra.

7.1 Set up the Signal Separation Problem

We will assume that there exists a “clean” separation of our observed mixture
of two signals (we will be explicit in what we mean by that momentarily, and we
will discuss the more general case in a moment). These signals, as time series,
are two columns of a matrix S, so that S ∈ IRp×2, where p is the length of the
sample.

We will further assume that the mixtures we are observing are linear mix-
tures, so that the mixtures we observe may be modeled as:

x1 = α1s1 + α2s2

x2 = α3s1 + α4s2

so that x1 is the observed mixture in microphone 1, and x2 is the observed
mixture in microphone 2. In linear algebra terms, we can state the problem as
follows:

Given x1, x2 as columns of X ∈ IRp×2, solve the following equation for
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Figure 7.2: The synthetic data set after the SVD transformation as described
in the text. In this case, the principal components analysis has left the desired
basis vectors in a rotated position. We require one more rotation (multiplication
by an orthogonal matrix) to get the desirable results.

A ∈ IR2×2 and S ∈ IRp×2:

X = SA

We assume that the rows of X have been mean-subtracted.
If you look at this equation, something should be occurring to you- this is

not a well defined problem! There are an infinite number of solutions for A, S.
In fact, one solution would be to let A be the 2× 2 identity matrix, and S = X .

We could also give a solution in terms of the SVD of X , which is what we
would do in Principal Component Analysis:

X = UxΣxV T
x

so that S = Ux, and A = ΣxV T
x . In this case the data is “separated” in the

sense that the columns of Ux are orthogonal (or uncorrelated). Figure 7.2 shows
the result of this operation on our synthetic data. It also shows that the desired
basis vectors are still rotated.

This process, while not the desired one, is a good first step, but somehow
we need the signals to be independent, and not just uncorrelated.

Alternatively, let us consider the SVD of the unknown mixing matrix A,
A = UmΣmV T

m . The problem will be solved if we knew this matrix, as S could
be computed by using the inverse of A (we assume that A is full rank- see the
exercises for a discussion). Let’s try some sample computations now by taking
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our original equation and substituting the SVD of A:

X = SA ⇒ X = SUmΣmV T
m

Now compute the 2 × 2 covariance of X :

XT X = VmΣmUT
mST SUmΣmV T

m

Now, if the rows of S are statistically independent, then they certainly should
be uncorrelated. We will assume therefore that SST is some scalar multiple of
the identity:

SST = cI2×2

which also assumes that the variances of the signals are the same. In particular,
we’ll assume that the signals in S have been scaled so that ST S = I. In the
exercises, we will examine this assumption in more detail.

Using this, we see that:

XT X = VmΣ2
mV T

m = VxΣxV T
x

This tells us that Vm and Σm are recoverable from the SVD of X : If

X = UxΣxV T
x

then
Σm = Σ1/2

x , Vm = Vx

If we were to stop here and take:

Y = XVxΣ−1/2
x = SUmΣmV T

m VxΣ−1/2
x = SUm

we obtain the standard PCA solution. However, the signals are still rotated.
We cannot perform another covariance computation on Y , since now:

Y T Y = UT
mST SUm = I2×2

How can we compute Um? There is some justification for what we’re about to
do- Let’s do it first and then discuss it.

Define dA to be the difference matrix for the matrix A. That is, if A has
been organized so that it comprises p samples of k time series of data, then let
A be p × k. We compute the difference as:

dA = A(2 : p, :) − A(1 : p − 1, :)

so that dA is now p − 1 × k and

(dA)ij = Ai+1,j − Ai,j

If the data in A were the sample of some differentiable function, then dA is an
approximation to the derivative using ∆t = 1.



7.1. SET UP THE SIGNAL SEPARATION PROBLEM 119

Note that the following matrix equation holds:

X = SA ⇒ dX = dS A

so that
dXT dX = AT dST dS A

More particularly, let

Y = XVxΣ−1/2
x , or dY = dXVxΣ−1/2

x = dS Um

so that dY T dY = UT
mdST dS Um. We now make our second assumption: While

ST S = I, we assume that dST dS 6= I, but is diagonal. In this case, we can
recover Um from the SVD of dY :

dY = UyΣyV T
y

and Um = V T
y . Note that the singular vectors are transposed when making this

computation!
This finishes our problem, since we have now computed the SVD of the

mixing matrix A. The clean signal is now found by taking:

S = Y Vy

We are approximating the mixing matrix by:

A ≈ V T
y Σ1/2

x Vx = UmΣmV T
m

so that the approximate inverse is found via:

A−1 = VmΣ−1
m UT

m = V T
x Σ−1/2

x Vy

This process of two SVDs, one on the matrix of data X , and another on the
data dY can be brought together as a single command. In fact, this process is
equivalent to using the Generalized Singular Value Decomposition, which will
sometimes go under the name of Quotient Singular Value Decomposition (GSVD
or QSVD, respectively). This simplifies the coding so that you only have to use
the following Matlab commands. Let X be the p × k matrix of k mixtures of
signals (this is transposed from our earlier notation). Then signal separation is
simply:

dX=diff(X);

[U,V,B,C,S]=gsvd(X,dX,0);

where the clean mixtures are in the columns of U .
We’ll try out both versions in the examples below, then in the next section

we’ll define the GSVD.

Example
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In this example, we will take three columns of data. The first two columns
will comprise a circle and the last will be white noise (that is, random data
from a normal distribution). We will then multiply this by 3× 3 mixing matrix
A, which was originally taken so that the elements are from a normal random
variable then subsequently hard coded for you to replicate. Denote the mixed
data matrix as X , as we did previously. Note that with column-wise data, the
mixing matrix equations become:

X = SA ⇒ X = SUΣV T

where we try to determine U, Σ, V .
Here is the script file to produce the signal separation:

%Script file to produce Example 1, ICA

numpts=400;

t=linspace(0,3*pi,numpts);

S=[cos(t’), sin(t’), randn(numpts,1)]; %Separated Signals

A =[ -0.0964 -0.1680 1.6777

0.4458 0.1795 1.9969

-0.2958 0.4211 0.6970]; %Mixing Matrix

X=S*A;

dX=diff(X);

[U,V,B,C,S] = gsvd(X,dX,0); %Clean Signal in U

%The double SVD code, equivalent to the GSVD:

[Ux,Sx,Vx]=svd(X,0);

Y=X*Vx*diag(1./sqrt(diag(Sx))); %Stopping here is basic PCA

dY=diff(Y);

[Uy,Sy,Vy]=svd(dY,0);

S2=Y*Vy; %S2 is also the clean signal

%Plotting routines below:

figure(1)

for j=1:3

subplot(3,1,j)

plot(U(:,j)); %Clean Signals from GSVD

end

figure(2)

for j=1:3

subplot(3,1,j);

plot(S2(:,j)); %Clean Signals from double SVD

end

figure(3)

for j=1:3

subplot(3,1,j)
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plot(Y(:,j)); %Results of PCA (or KL)

end

7.2 Signal Separation of Voice Data

In this example, we will linearly mix two voice signals, then separate them
using the techniques we previously described. This example is best done using
a computer with a good sound card, but can be done without it.

Matlab comes with several sound files. For this example, we will use handel
(a sample of the chorus to Handel’s “Messiah”), and laughter (a sample of
people laughing). The two files have different lengths, so we’ll have to cut the
longer file off so that they match.

Here is the Matlab code:

%Script for sound files

load handel

y1=y;

load laughter

S=[y y1(1:52634)]; %Clean samples in the columns of S

A =[ -0.5883 -0.1364; 2.1832 0.1139]; %Mixing Matrix

X=S*A;

mX=mean(X);

X=X-repmat(mX,52634,1);

figure(1)

plot(X(:,1),X(:,2),’.’);

title(’Mixed Signals’);

%For comparison purposes, here’s the SVD

[Ux,Sx,Vx]=svd(X,0);

Y=X*Vx*(1./sqrt(diag(Sx)));

figure(2)

plot(Y(:,1),Y(:,2),’.’);

title(’KL Results’)

%Listen to the results: You’ll still hear mixtures

%soundsc(Y(:,1));

%soundsc(Y(:,2));

dX=diff(X);

[Y2,V,B,C,S3]=gsvd(X,dX,0);

figure(3)

plot(Y2(:,1),Y2(:,2),’.’);

title(’ICA Results’);

%Listen to the results: They will be clean!
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%soundsc(Y2(:,1));

%soundsc(Y2(:,2));

More to Think About: There are a lot of experiments you can try with this
data. Here are some things you might try:

• Plot the signals as time series if you’ve never looked at voice data before.
Also plot the differenced signal. You might also look at the histograms
of the two voice signals using hist. Do the signals look like they are
normally distributed or do they follow a Laplace distribution?

• Change the mixing matrix to a random matrix. Will you always get good
results?

• Listen to the difference matrix dX . Does it still sound like the original?
Listen to the second, third, fourth difference. Why does the “derivative”
of the signal sound just like the original (perhaps with a different timbre
quality, but recognizable just the same)?

• Check the assumptions on the clean signal S and the differenced signal
dS- Are the assumptions met?

7.3 A Closer Look at the GSVD

Suppose that we have two matrices X ∈ IRm×n and Z ∈ IRp×n. The GSVD of
matrices X, Z is a decomposition where we determine Û , V̂ , W, C, S so that:

X = ÛCWT Z = V̂ SWT

where Û , V̂ have orthonormal columns, C, S are diagonal matrices such that
CT C + ST S = I, and W is an invertible matrix. In Matlab, the command is:

[Ux,Vz,W,C,S]=gsvd(X,Z)

The values of C, S and W satisfy the following generalized eigenvalue problem:

s2
i A

T Awi = c2
i B

T Bwi

The solution we use for the signal separation is now either:

X = ÛCWT = Û(CWT ) = SA or X = ÛCWT = (ÛC)WT = SA

In the special case that si 6= 0, we’ll show that we can find xi using two
regular SVD’s as we did in the signal separation.

In this case, the eigenvector problem can be written as:

XT Xwi = λZT Zwi ⇒
(

XT X − λZT Z
)

wi = 0

If we let X = UΣxV T
x be the SVD of X , then we can rewrite this as:

(

VxΣ2
xV T

x − λZT Z
)

xi = 0
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This can be factored as:

[

VxΣx

(

I − λ(Σ−1
x V T

x )ZT Z(VxΣ−1
x )

)

ΣxV T
x

]

wi = 0

or equivalently, if Vx is square and Σx is invertible:

(

I − λ(Σ−1
x V T

x )ZT Z(VxΣ−1
x )

)

ΣxV T
x wi = 0

If we let Y = ZVxΣ−1
x , and qi = ΣxV T

x wi, the previous equation can be written
as:

(I − λY T Y )qi = 0

Therefore, qi is an eigenvector of Y T Y , or a right singular vector of Y . We can
compute wi = VxΣ−1

x qi, or

W = VxΣ−1
x Q = VxΣ−1

x Vy

To summarize, the GSVD is equivalent to two SVDs as follows:

• Let X = UΣxV T
x be the SVD of A

• Let Y = ZVxΣ−1
x be a “whitening” transformation.

• Let Y = UyΣyV T
y be the second SVD.

• Final answer: W = VxΣ−1
x Vy

To connect this process to our previous signal separation solution, let’s recall
what we did there: Let X be the mixed signal, dX be the differenced signal (we
are now thinking of Z = dX):

• Let X = UxΣxV T
x be the SVD of X .

• Let dY = dXVxΣ
−1/2
x be the “whitened” signal.

• Let dY = UyΣyV T
y be the second SVD.

• Then S = Y Vy = XVxΣ
−1/2
x Vy = XW is the clean signal.


