
Chapter 9

Data Clustering

In this chapter, we examine the problem of data clustering. Consider the two
data sets in Figure 9.1. In the first graph, we see data that have no class labels,
but there seems to be a natural separation of the data into three clumps. A
natural clustering algorithm would produce three clusters, and this would be
an unsupervised task. On the other hand, the data may include class labels, as
seen in the second graph (Class 1 is triangles, Class 2 is asterisks), and in this
supervised learning task, we would want to find a function that would tell us
which class is assigned to each data point.

In this chapter, we review the main clustering algorithms currently in use.
We will see that they share many common characteristics, including the as-
sumption that the data set under study can be accurately clustered using spa-
tial information alone. This leads us to consider a clustering algorithm designed
specifically for attracting sets of dynamical systems, and culminates in the de-
velopment of a space-time clustering algorithm.

9.1 Background

We will first look at the unsupervised clustering task. In this case, the input
to the algorithm is a data set and the desired output is the number of clusters
used, and the membership function that maps the data to its corresponding
cluster index.

Definition: Unsupervised Clustering In the unsupervised task, we are
given a data set, X , whose elements are vectors x

(i) ∈ IRn. We want a mem-
bership function which has a domain in IRn and will output the cluster index
(or label). Defining this function as m, we have:

m(x(i)) = gi

where gi is the integer for the class for the data point, typically one of the
integers from 1 to k, where k may be specified or perhaps output from the
algorithm.

127

128 CHAPTER 9. DATA CLUSTERING

−4 −3 −2 −1 0 1 2 3
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−4 −3 −2 −1 0 1 2 3
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 9.1: In the first graph, we see data that have no class labels, but there
seems to be a natural separation of the data into three clumps. An ideal cluster-
ing algorithm would produce the three clusters, and this would be an unsuper-
vised task. On the other hand, the data may include class labels, as seen in the
second graph (Class 1 is triangles, Class 2 is asterisks), and in this supervised
learning task, we would want to find a function that would tell us which class
is assigned to each data point.

One of the things that makes this problem so interesting is that it is very ill-
posed- there are an infinite number of ways of building a membership function.
For two extreme examples, consider these two membership functions:

m1(x
(i)) = 1

where i is the index for the data points. Another function that is about as useful
as m1 is the following:

m2(x
(i)) = i

In the first case, we have only one class, and in the second case, we have as
many classes as there are data points! In order to get a useful algorithm, we
will need to try to define some kind of error function that we can then minimize.
The easiest way to do this is through Voronoi Cells:

Definition: Let
{

c
(i)

}k

i=1
be points in IRn. These points form k Voronoi Cells,

where the jth cell is defined as the set of points that are closer to cell j than
any other cluster:

Vj =
{

x ∈ IRn | ‖x − c
(j)‖ ≤ ‖x − c

(i)‖, i = 1, 2, . . . , k
}

The points
{

c
(i)

}k

i=1
are called cluster centers. In the uncommon occurrence

that a point x lies on the border between cells, it is customary to include it in
the cell whose index is smaller (although one would fashion the decision on the
problem at hand). The reader might note that a Voronoi cell has a piecewise
linear border.
Examples in “Nature”

9.1. BACKGROUND 129

Figure 9.2: Sample Voronoi diagram sketched by hand. First, draw a line
between neighboring centers (dotted in the figure). These are guides to drawing
the actual borders, shown in solid black. These are perpendicular bisectors of
the dotted lines.

1. In [?], Voronoi cells are used to define the “area potentially available
around a tree”. That is, each tree in a stand represents the center of
the cell.

2. Using a map of the campus with the emergency telephone boxes marked
out and used as the centers, we could always tell where the closest phone
is located.

We can draw a Voronoi diagram by hand: Between neighboring cells, draw
a line (that will be erased at the end), then draw the perpendicular bisectors for
each line drawn. See Figure 9.2. This can get complicated fairly quickly, so we
will be using Matlab to produce the plots. The algorithms that do these plots
are very interesting (see, for example [?]) but will be beyond the scope of our
text.
Matlab Example: Matlab has the the plotting algorithm built-in. For exam-
ple, Figure 9.3 shows the output of the following (yours will be slightly different
due to using random cluster centers):

X=randn(10,2);

voronoi(X(:,1),X(:,2));

We can also have Matlab return the vertices of the Voronoi cells to plot them
manually:

[vx,vy]=voronoi(X(:,1),X(:,2));

plot(vx,vy,’k-’,X(:,1),X(:,2),’r*’);

In the algorithms that we work with, it will be convenient to have a function
that will identify those points within a given cluster; the characteristic function

130 CHAPTER 9. DATA CLUSTERING

−2.5 −2 −1.5 −1 −0.5 0 0.5
−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 9.3: The output of our Matlab example, running the voronoi algorithm
on 10 random points in IR2.

is typical for that purpose, and is defined as 0 or 1, depending on whether or
not the data point belongs to the cluster:

χi(x) =

1 if m(x) = i

0 otherwise

One general way to measure the goodness of a clustering algorithm is to
use a measure called the distortion error for a given cluster i, and the total
distortion error1:

Ei =
1

Ni

N
∑

k=1

‖x(k) − c
(i)‖2 χi(x

(k)) Etotal =

p
∑

k=1

Ek

where Ni is the number of points in cluster i, and N is the total number of
points overall. You might notice that the values being summed are only non-
zero for those data points x that are in cluster i. The total error is simply the
sum of the individual “errors” or distortions.

1Some authors do not square the norms, but it is more convenient for the theory, and does

not change the end results.

9.2. THE LBG ALGORITHM 131

9.2 The LBG Algorithm

The LBG (Linde-Buzo-Gray, see [22]) algorithm2 is perhaps the fastest of this
chapter, and the easiest to visualize. The membership function for the LBG
algorithm is defined so that we are in cluster i if we are in the Voronoi cell
defined by the ith cluster center. That is,

m(x) = i iff ‖x− c
(i)‖ < ‖x− c

(j)‖ i 6= j, j = 1 : p (9.1)

In the rare circumstance that we have a tie, we’ll choose to put the point with
the center whose index is smallest (but this is ad-hoc).

The Algorithm

Let X be a matrix of p data points in IRn, and let C denote a matrix of k
centers in IRn. At each pass of the algorithm, the membership function requires
us to take p × k distance calculations, followed by p sorts (each point has to
find its own cluster index), and this is where the algorithm takes most of the
computational time. To do the distance calculations, we will write a function
named edm (for Euclidean Distance Matrix). See the exercises in this section
for the Matlab code.

The algorithm begins by choosing the centers to be data points (randomly
selected), and then we iteratively update the centers that will minimize our
error, Etotal:

• Sort the data into k sets by using the membership function in Equation
9.1. We will use the EDM to do this.

• Re-set center ci as the centroid of the data in the ith set.

• Compute the distortion error.

• Repeat until the distortion error no longer decreases (either slows to noth-
ing or starts increasing).

A Toy Example:

Here we use the LBG algorithm three times on a small data set, so you can have
a test set for the code that you write.

Let the data set X5×2 be the matrix whose rows are given by the data points
in the plane:

1

2

 ,

0

1

 ,

−1

0

 ,

1

1

 ,

−1

−1

2The LBG algorithm is similar to a method known as k-means clustering. We will define

the k−means clustering to be the on-line version of the LBG.

132 CHAPTER 9. DATA CLUSTERING

You might try drawing these on a plane. You may see a clustering of three
points to the right, and a clustering of two points to the left.

We will use two cluster centers, and initialize them randomly from the data.
In this case, the rows of C are:

0

1

 ,

1

1

The matrix matrix D5×2 shows the result of using edm to compute the dis-
tances between our 5 data points and 2 cluster centers:

D =

√
2 1

0 1
√

2
√

5

1 0
√

5
√

8

, M =

2

1

1

2

1

You can see that M gives the membership index (the value of the smallest
distance in each row). Resorting into two clusters,

0

1

 ,

−1

0

 ,

−1

−1

1

2

 ,

1

1

The cluster centers are re-set as the centroids:

−2/3

0

 ,

1

3/2

After one more sort and centroid calculation, we get:

−1

−1/2

 ,

2/3

4/3

which does not change afterward (so the clusters also remain the same).
The basic algorithm may have a few shortcomings. For example,

• The centers may be (or become) empty. To avoid this initially, it is custom-
ary to initialize the cluster centers using k data points randomly chosen.
If a cluster becomes empty, we might delete it or simply ignore it.

• We had to pre-define the number of clusters. Is it possible to construct
an algorithm that will grow or shrink the number of clusters based on
some performance measure? We’ll look at this question again after some
programming.

9.2. THE LBG ALGORITHM 133

Exercises

1. Fill in the missing details from the example in the text: Fill in the EDM
and the vector M after the second sort, and continue the example one
more iteration to show that the clusters do not change. Hint: To compute
the distance matrix, use the points as they were originally ordered.

2. Given p scalars, x1, x2, . . . , xp, show (using calculus) that the number µ
that minimizes the function:

E(µ) =

p
∑

k=1

(xk − µ)2

is the mean, µ = x̄.

3. Generalize the last exercise so that the scalars (and µ) are now vectors in
IRn. That is, given a fixed set of p vectors in IRn, show that the vector µ
that minimizes:

E(µ) =

p
∑

k=1

‖x(i) − µ‖2

is the mean (in IRn).

4. Write the following as a Matlab function. The abbreviation EDM is for
Euclidean Distance Matrix. Good programming style: Include comments!

function z=edm(w,p)

% A=edm(w,p)

% Input: w, number of points by dimension

% Input: p is number of points by dimension

% Ouput: Matrix z, number points in w by number pts in p

% which is the distance from one point to another

[S,R] = size(w);

[Q,R2] = size(p);

p=p’;

if (R ~= R2), error(’Inner matrix dimensions do not match.’),end

z = zeros(S,Q);

if (Q<S)

p = p’;

copies = zeros(1,S);

for q=1:Q

z(:,q) = sum((w-p(q+copies,:)).^2,2);

end

else

w = w’;

copies = zeros(1,Q);

134 CHAPTER 9. DATA CLUSTERING

for i=1:S

z(i,:) = sum((w(:,i+copies)-p).^2,1);

end

end

z = z.^0.5;

5. Write a Matlab function, lbgUpdate that takes in a p × n data set X (p
points in IRn), a matrix of cluster centers Ck×n, representing k centers
in IRn. Output the updated cluster centers, and a vector containing the
distortion error on each cluster.

Test your code using our toy data set. You might find it convenient to
write a script file that sets up the data and calls lbgUpdate in a loop.

6. Will the cluster placement at the end of the algorithm be independent
of where the clusters start? Answer this question using all the different
possible pairs of initial points from our toy data set, and report your
findings- In particular, did some give a better distortion error than others?

Growing and Shrinking the LBG

We can think about ways to prune and grow the number of clusters, rather than
making it a predefined quantity. Here are some suggestions for modifications
you can try:

• Split that cluster with the highest distortion measure, and continue to split
clusters until the overall distortion measure is below some preset value.
The two new cluster centers can be initialized a number of ways- Here is
one option:

c
(i1,i2) = c

(i) ± ǫ

However, this may again lead to empty clusters.

• We can prune away clusters that either have a small number of points,
or whose distortion measure is smaller than some pre-set quantity. It is
fairly easy to do this- Just delete the corresponding cluster center from
the array.

9.3 K-means Clustering via SVD

Ah- The SVD. Is there nothing that it cannot do?

Relatively new to the area of clustering, a technique known as spectral clus-

tering brings a new development: We can perform k−means clustering (a.k.a.
LBG) by using the SVD. The general idea is that, given p data points in IRn,
we compute the p × p similarity matrix (we will use the Euclidean Distance
Matrix).

“K-means clustering via Principle Component Analysis”, by Ding, Chris and
He, Xiaofeng, 2004 (Lawrence Berkeley National Lab)

9.4. KOHONEN’S MAP 135

Figure 9.4: Teuvo Kohonen (from his web site) holding a well deserved drink.

9.4 Kohonen’s Map

Teuvo Kohonen (See Figure 9.4) is a Neural Network researcher at the Helsinki
University of Technology in Finland. He has made his code available to the
public at his programs web site

http://www.cis.hut.fi/nnrc/nnrc-programs.html

Kohonen’s Map is important in several ways. The first is that the cluster
centers self-organize in such a way as to mimic the density of the given data set,
but the representation is constrained to a preset structure. We’ll see how that
works later. Secondly, Kohonen is convinced that this map is a simple model
on how neurons in the brain can self-organize. To read more about this, see
Kohonen’s book [20]. Thirdly, the general principles of using this map can be
generalized to solve other problems. Again, to read more about this, consult
Kohonen’s book. We will focus here on the clustering aspects of Kohonen’s Map
(a.k.a. Self-Organizing Map, or SOM).

In biological arrays of neural cells, if one cell is excited, it will dominate
the array’s response to a given signal. Nearby cells may give a weak response,
while cells that are far away give no response at all. One can see this “on-
center, off-surround” concept in arrays of visual cells, for example. In Figure
9.5, we illustrate this concept that is also known as competition. Here we see a
rectangular array of cells. In this case, the winning cell is at the (3, 1) position.
Its receptive field is approximately 1.5 units. Outside that field, the cells are not
responding.

We are introducing a new structure- the cell structure or array - into the
data. Therefore, we will define a cluster center in two ways: Each cluster
center has a placement in IRn, with the data, and a placement in the cell array.
Typically, cells are arranged in a rectangular or hexagonal grid- although this
is not a necessity- they may represent points on a sphere, or a torus, etc. The

136 CHAPTER 9. DATA CLUSTERING

Figure 9.5: A rectangular array of cells. The grayscale value corresponds to
how much the cells are responding to a given pattern. The winning cell is at
position (3, 1)

important point here is that, whatever the structure, it is possible to obtain a
metric between cluster centers. Denote the distance between centers i and j
using this metric as: dI(i, j)

Throughout the training, this structure will remain fixed.

1. Exercise: Let cell w be fixed. How does the following quantity change
for cells i, i = 1, 2, . . . , p? What does the λ control?

exp

(−d2
I
(i, w)

λ2

)

2. Exercise: Let x and c be vectors in IRn. Describe what the following
line of programming code does (in graphical terms):

c = c + ǫ · (x − c)

3. Remark: The SOM, like the LBG, requires an initial placement of the
cluster centers. The algorithm produces a “better” placement of the clus-
ters. In the SOM, the training will slowly unfold the preset structure into
the data space.

4. Remark: The SOM, unlike the LBG, does not have a known quantity
that it minimizes.

9.4. KOHONEN’S MAP 137

5. Update of the Training Parameters: If α is a training parameter, we
will use the following update procedure:

• Set the initial α (αi) and ending α, αf . Set the maximum number
of iterations, tmax.

•

α(k + 1) = αi

(

αf

αi

)
k

tmax

(9.2)

6. Kohonen’s SOM Algorithm:

• Initialize centers, ǫi,f , λi,f , tmax

• Choose a data point x at random from X .

• Find the closest center, cw. Call this the winning center.

• Update all centers:

c
(i)(k + 1) = c

(i)(k) + ǫ(k) · exp

(−d2
I
(i, w)

λ2(k)

)

(

x − c
(i)(k)

)

• Update ǫ, λ according to Equation (9.2).

• Repeat until a stopping criterion has been attained (usually when
tmax has been reached).

7. Training Notes:

• Initially, use large values of λ (about half the diameter of the set).
This strongly enforces the ordering of the cells.

• Small values of λ “relaxes” the ordering, and allows the cluster centers
to spread out amongst the data set.

• Cluster centers are initialized at random.

• Stopping criteria: There are several alternatives. One method is to
stop if the centers are no longer changing significantly. Matlab will
simply stop after the preset number of iterations.

8. Matlab note: Matlab splits the training into two distinct phases: Or-
dering and Training. The ordering phase allows the centers to unfold and
order themselves, while the training phase puts the centers into the data
set.

Therefore, there are several parameters in Matlab’s algorithm:

• The value of λ is initially automatically set to be the maximum dis-
tance between centers, and during the ordering phase, is reduced to
1.

• Ordering phase number of steps, q.

138 CHAPTER 9. DATA CLUSTERING

• Ordering phase learning rate, α. α is decreased linearly during the
ordering phase, and after q steps, is equal to the training phase learn-
ing rate, below.

• Training phase neighborhood distance: This is λ in our previous
example, and will remain fixed during the training phase.

• Training phase learning rate, β. During training, β decreases slowly,
and the neighborhood parameter is held fixed.

9. Kohonen’s Map Example:

In the following example, we construct a rectangular grid of two dimen-
sional neurons (2×3). The data set will consist of 1, 000 points in IR3, and
the matrix P is 3 × 1000. The following commands will set up the self-
organizing map and train the network. Following this set of commands,
we will describe what each does.

1 P=rand(3,1000);

2 OLR=0.9;

3 OSTEPS=1000;

4 TLR=0.02;

5 TND=1;

6 net=newsom(minmax(P),[10,10],’gridtop’,’dist’,

OLR,OSTEPS,TLR,TND);

7 net.trainParam.epochs=2000;

8 net=train(net,P);

If you want to use just the default parameters given above, the newsom

command can be shortened to:

6 net=newsom(minmax(P),[10,10]);

To plot the result (this is plotting the centers in the data space with
connections, versus labeling the data in the center topology):

9 plotsom(net.iw{1,1},net.layers{1}.distances)

To classify new data points in a data set X , we can type:

A=sim(net,X);

The output of the network will be a sparse array type. For example, if
we have a 10 × 10 grid array with 20 points in X , A will be a 100 × 20
matrix, where A(i, j) = 1 iff data point i is associated to cluster center j.

10. Program explanations:

9.4. KOHONEN’S MAP 139

• Line 1 sets up a random data set for training.

• OLR=“Ordering phase learning rate”

• OSTEPS=“Ordering phase number of steps”

• TLR=“Training phase learning rate”

• TND=“Training phase Neighborhood distance”

• The previous four items are set at Matlab’s default values, which is
fine for generic problems.

• Line 6 is the main command. newsom initializes a network struc-
ture for the SOM and inputs all of the needed training parameters.
The first argument, minmax, returns a matrix with the minimum and
maximum values of each dimension of the training set. The next
argument defines the network topology (10 rows of 10 neurons each).
Three numbers here would represent a three dimensional array of
neurons, etc. The next argument, gridtop, tells the program that
the array is a (two dimensional) grid. Other options are a hexagonal
grid (the default- use hextop, or random placement, randtop. The
next command defines the metric to use. In this case, we are using
the standard Euclidean metric, but other possibilities are boxdist

(square neighborhoods) or linkdist (which is the default), which
uses the number of links between cells i and j. The next four options
were defined previously.

11. Kohonen’s Map and Density To further contrast Kohonen’s Map with
the LBG, the SOM will attempt to “mimic” the density of the data.

12. Matlab Project: Taxonomy In this project, we use Kohonen’s Map to
visualize high dimensional data in two dimensions. We will compare this
to the Karhunen-Loéve projection to two dimensions.

What’s this project about?

In many applications, we are given high dimensional data that we would
like to visualize in two dimensions. In this project, the goal of the clus-
tering algorithm is to see which groups of data points belong together -
That is, how is the data sitting in that high dimensional space.

One application that we look at here is animal taxonomy, where we group
animals together based on their physical characteristics. Another applica-
tion that Kohonen and his group are working on is to classify documents
on the Web according to their similarities.

Description of the data

The data in tax001.dat is a matrix that is 13 × 16 with entries either 0
or 1. Each column represents characteristics of one animal, 0 means that
characteristic is not present, 1 means that the characteristic is present.
The characteristics are (in order):

140 CHAPTER 9. DATA CLUSTERING

• Is small, medium, big (first three entries)

• Has 2 legs, 4 legs, hair, hooves, mane, feathers (next 6 entries)

• Likes to fly, run, fly, swim (next 4 entries)

The animals (in order) are: Dove, Hen, Duck, Goose, Owl, Hawk, Eagle.
Fox, Dog, Wolf. Cat, Tiger, Lion. Horse, Zebra, Cow. (Grouping with
periods was for clarity).

The m-file (script) taxnames.mwill load the animal names into a cell array.
For example, after running the script, you should find the variable names.
If you type names{1}, Matlab will return string one, which is Dove. This
will be handy in the plotting routines below.

NOTE: Cell arrays are handy to use if you want to store a series of vectors
that are not of the same size. They can also be used to store other types of
data, and by using strings, one can also use a cell array to index a family
of functions (by their m-file names).

Project, Part I: For the 16 data points in IR13, perform a KL projection
to the best two dimensional space. On the two dimensional plot of the 16
data points, label them according to the animal name.

In Matlab, you can plot a text string at coordinates (x, y) by using the
text command. For example:

x=rand(16,1);

y=rand(16,1);

text(x,y,names);

will plot the names of the animals (if you have already run taxnames).

Project, Part II: Use Matlab’s SOM commands to map the 16 data
points onto a 10 × 10 rectangular array of neurons. Plot the resulting
classifications on the rectangular grid to see if you get results that are
similar to Kohonen’s (see attached page). I will give you a program that
will perform this plotting (Matlab does not have one that is ready-made).
Kohonen used a total of 2, 000 presentations.

9.5 Neural Gas

Before we begin, let us summarize the clustering procedures that we have up
to this point. The LBG algorithm performs a simple clustering of the data,
putting cluster centers into the data. Kohonen’s map adds another element, a
topological structure on the cluster centers. This is useful if we have a topol-
ogy in mind (i.e., a rectangular grid for two dimensional visualization of high
dimensional data). What if we don’t know what topological structure to use?

This question can be re-stated as: Find a topology preserving clustering.

9.5. NEURAL GAS 141

1. Definition: A clustering is said to be topology preserving if it maps neigh-
boring cells from the topology to neighboring clusters in IRn, and neigh-
boring data points in IRn to neighboring cells in the topology.

In Figure 9.6, we see three topologies mapped to the data, which is a
uniform distribution of points in IR2. In the first picture, the topology of
the cells is a one dimensional set. In this situation, the cluster mapping is
not topology preserving, because neighboring cells in the topology are not
adjacent in the plane. In the second situation, we have a three-dimensional
topology mapping to the plane. In this case, neighboring data points in
IR2 are mapped to non-neighboring cells in the topology. Only in the third
picture do we see that both parts of the topology preserving mapping are
satisfied.

2. Remark: The Neural Gas Algorithm [23, 25, 24] was constructed to do
away with an a priori topological structure. It will build the topology as
it clusters.

3. Definition: To define the topology, we need to construct a Connection
Matrix, M , where

Mij =

1 If cell i connected to j

0 Otherwise

so that M , together with the center positions in IRn, form the cluster
topology.

4. Remark: Critical to the topology mapping in Kohonen’s SOM was the
metric: dI(i, w). We’ll need something else to take its place.

5. Definition: The Neural Gas metric

As before, define w as the index of the closest center to a given data
point x. Sort the centers according to their distances to c(w), and put the
ordered indices into a vector, V = {w, i1, i2, . . . , ik−1}. Therefore, V (k)
represents the index of the kth closest center to C(w). Then:

dng(i, w) = k − 1

where V (k) = i. So, dng(i, w) counts how many centers are closer to w
than center i is.

6. Example: Let C = 0.1, 0.2, 0.4, 0.5. If x = 0.25, then w = 2, and V =
{2, 1, 3, 4}. And, dng(1, 2) = 1, dng(2, 2) = 0, dng(3, 2) = 2, dng(4, 2) = 3.

7. Definition: Connection Update: The Neural Gas algorithm will also
be constructing the connection matrix. The main idea is the following:

“Let c(w) be the center closest to data point x, and let c(k) be
its closest center. Then set Mw,k = 1.”

142 CHAPTER 9. DATA CLUSTERING

Figure 9.6: Which mapping is topology preserving? Figure 1 shows a mapping
that is not topology preserving, since neighboring cells are mapped to non-
neighboring points in IR2. On the other hand, the middle clustering is not
topology preserving, because neighboring points in IR2 are mapped to non-
neighboring cells in the topology. Only the third picture shows a topology
preserving clustering.

9.5. NEURAL GAS 143

Problem: As centers get updated, the closest neighbors will change.

Solution: We will keep track of the age of the connections and remove
them if the have aged past a preset criteria, T M .

That is, we will construct a time matrix T where Tij =age since Mi,j was
last updated.

8. Remark: Notice that a connection matrix can be constructed indepen-
dently of the cluster center updates.

9. The Neural Gas Algorithm:

(a) Initialize the centers, M , T , ǫi,f , λi,f , T M
i,f tmax (max number of iter-

ations for NG). For example, in [23, 25, 24], they used: (N=number
of data points)

• ǫi = 0.3, ǫf = 0.05,

• λi = 0.2N , λf = 0.01,

• T M
i = 0.1N , T M

f = 2N

• tmax= 200N .

The parameters with the i, f subscript are updated using Equation
(9.2) described in the last section.

(b) Select a data point x at random, and find the winner, c(w).

(c) Compute V .

(d) Update all centers:

c(i) = c(i) + ǫ exp

(−dng(i, w)

λ

)

(x − c(i))

(e) Update the Connection and Time Matrices: Let i = V (2). If Mw,i =
0, set Mw,i = 1, and Tw,i = 0. If Mw,i = 1, just reset Tw,i = 0. Age
all connections by 1, Tj,k = T j, k + 1.

(f) Remove old connections. Set Mw,j = 0 whose corresponding entries
in T are larger than the current value of T M .

(g) Repeat.

10. Results of the Neural Gas Algorithm It is shown in [24] that the
Neural Gas algorithm produces what is called an induced Delaunay Tri-

angulation. A Delaunay Triangulation is what we produced in the intro-
duction of this chapter when we were building a Voronoi Diagram. The
induced triangulation will be a subgraph of the full triangulation. See [24]
for more details on the definitions.

11. A path preserving mapping of a manifold. The Neural Gas algo-
rithm has also been used to construct a discrete, path preserving repre-
sentation of an environment. See the attached picture, from [24].

12. Other applications. Later, we will use the Neural Gas algorithm to
perform time series predictions.

144 CHAPTER 9. DATA CLUSTERING

9.5.1 Matlab and Neural Gas

Matlab has not yet implemented a version of the Neural Gas algorithm. We
will construct a suite of programs below. Although its not necessary, we will
use data structures so that we’re familiar with their useage when we get to the
neural networks section.

The suite of programs will be: NeuralGas, initng, paramUpdate, and plotng.

1. The program initng is a program that will set all of the training param-
eters, and initialize the centers. This program should be edited at the
beginning of a problem. The code is given below. Note the presence of
the data structure, which allows us to wrap the parameters and the data
together.

function C=initng(X)

[m,n]=size(X);

C.NC=500; %Number of clusters

C.lr=[0.3 0.05]; %initial, final learning rate epsilon

C.nbr= [0.2*n 0.01]; %initial, final lambda (neighborhood size)

C.tcon=[0.1*n 2*n]; %initial, final time (for connection matrix)

C.tmax=200*n; %max number of iterations

C.epochs=1; %number of epochs (each epoch runs tmax iterations,

%and resets the training parameters after each.)

C.tflag=1 %Training flag: 1=Use Connection, 0=Do not use

Id=randr(n);

C.cen= X(:,Id(1:C.NC)); %Initialize the centers randomly from the data

C.M=zeros(C.NC,C.NC); %Initialize the connection matrix (if tflag=1)

2. The Neural Gas main algorithm is presented below. To get things moving
a little faster, one can change several things. For example, if we have a
large number of centers, we probably don’t need to update all of them.

function C=NeuralGas(X,C)

%FUNCTION C=NeuralGas(X,C)

% This is the Neural Gas clustering algorithm. There are

% two ways to call this program:

% [C,M]=NeuralGas(X);

% With only one input argument, the program will

% read the file initng.m for the initialization

% procedures, and train the network. See the bottom

% of this file for a sample initng.m file.

% [C,M]=NeuralGas(X,C)

% With two input parameters, we assume the centers

% have been initialized in the structure C. See the

% initng file for structure specifications.

%We will use the following as the current update parameters:

% lr = current learning rate

% nbr= current neighborhood size (lambda)

% t = current time setting (for connection matrix)

%INITIALIZATION:

if nargin==1 %use the initng file

C=initng(X);

end

9.5. NEURAL GAS 145

[m,n]=size(X) %Dimension is m, number of points is n

[m,numcenters]=size(C.cen)

lr=C.lr(1);

nbr=C.nbr(1);

if C.tflag

t=C.tcon(1);

Age=zeros(numcenters,numcenters);

end

for j=1:C.epochs

for k=1:C.tmax

if rem(k,1000)==0

disp(’iterate =’);

disp(k)

disp(’out of’)

disp(C.tmax)

end

%**

%

% Step 1: Choose a data point at random and compute

% distance vector.

%

%**

curidx=ceil(n*rand);

Nx=X(:,curidx);

D=(C.cen - repmat(Nx,1,numcenters)).^2;

dd=sum(D);

[Md,w]=min(dd);

D=(C.cen - repmat(C.cen(:,w),1,numcenters)).^2;

dd=sum(D);

[Md,Id]=sort(dd);

%**

%

% Step 2: Update all centers and training parameters

%

%***

for s=1:numcenters

aa=lr*exp(-(s-1)/nbr);

C.cen(:,Id(s))=C.cen(:,Id(s))+aa*(X(:,curidx)-C.cen(:,Id(s)));

end

lr=paramUpdate(C.lr,k,C.tmax);

nbr=paramUpdate(C.nbr,k,C.tmax);

%**

%

% Step 3: If necessary, update Connection matrix and Time.

%

%**

if C.tflag

ab=Id(2);

146 CHAPTER 9. DATA CLUSTERING

C.M(w,ab)=1;

Age(w,ab)=0;

Ix=find(C.M>0);

Age(Ix)=Age(Ix)+1;

Iy=find(Age>=t);

C.M(Iy)=0;

t=paramUpdate(C.tcon,k,C.tmax);

end %End of time and connection update

end %End of C.tmax (k) loop

end %End of C.epochs (j) loop

3. The function paramUpdate is simply a call to Equation (9.2).

4. The function plotng is an example of how we can plot the edges of the
graph that is produced using the algorithm. As presented, it only plots
the two dimensional graph.

function cidx=plotng(C)

%Plots the connections in C as line segments.

% C is the center structure that is constructed

% by the neural gas routine. cflag returns 1

% if there are no connections.

[m,n]=size(C.M); %A square matrix

cidx=0;

for i=1:n

for j=1:n

if C.M(i,j)==1

cidx=cidx+1;

Lx(:,cidx)=C.cen(:,i);

Ly(:,cidx)=C.cen(:,j);

end

end

end

if cidx==0

disp(’No connections’);

end

for i=1:cidx

line([Lx(1,i) Ly(1,i)],[Lx(2,i), Ly(2,i)]);

if i==1

hold on

end

end

9.5.2 Project: Neural Gas

This project explores one application of triangulating a data set: Obtaining a
path preserving representation of a data set.

For example, suppose we have a set of points in IR2 that represents a room.
We have a robot that can traverse the room - the problem is, there are obstacles

9.6. CLUSTERING AND LOCAL KL 147

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

Figure 9.7: The data set that represents the ”free” area. White regions indicate
obstacles.

in its path. We would like a discretization of the free space so that the robot
can plan the best way to move around the obstacles.

The data set is given in obstacle1.mat, and is plotted below. The areas
where there are no points represent obstacles. Assignment: Use the Neural
Gas clustering using 1, 000 data points and 300 cluster centers to try to represent
the obstacle-free area. I would like for you to turn in:

• A printout of initng that you have edited for the problem.

• A printout of the results of using Matlab’s profiler on the Neural Gas
algorithm (you need only the report on the Neural Gas function itself, not
all of its subfunctions).

• A plot (using plotng) of the triangulation.

9.6 Clustering and Local KL

In many applications of clustering, we look at clustering as a preprocessing of
the data to perform local modeling. Before we continue, let us define some
mathematical terms that will make our goals a little clearer.

1. Definition: A k-manifold in IRn is a set that is locally homeomorphic to
IRk.

148 CHAPTER 9. DATA CLUSTERING

−1 −0.5 0 0.5 1 1.5 2
−4

−3

−2

−1

0

1

2

3

4

Figure 9.8: This object is not a manifold because of the branching.

2. Examples: The circle in the plane is an example of a 1−manifold - it
is locally one dimensional. Note that it is globally two dimensional, but
is the image of a one dimensional set. Similarly, the sphere in IR3 is
locally two dimensional (and is the image of a two dimensional set), but
is globally three dimensional. And the graph of the function z = f(x, y)
is also two dimensional locally, but globally may require three dimensions
in which to express it. In Figure 9.8, we see an example of something that
is not a manifold. The problem is at the crotch of the branch, where a
one dimensional set breaks into two branches. At this point, the set must
be represented in two dimensions, while at every other point, the set is
one dimensional. Note that this means that the k in “k−manifold” must
remain constant throughout the set.

3. Building the local maps. Since a manifold is locally homeomorphic to
IRk, we should be able to build local homeomorphisms, each using k basis
vectors. What are they?

In Differential Geometry, if the manifold is locally represented as the graph
of a differentiable function, we use the span of the columns of the Jacobian
matrix - that is, the k basis vectors span the Tangent space.

For us, the goal may be to construct the function so that the data repre-
sents the graph, so we have no function to differentiate. We will use the
KL basis to approximate the Tangent space.

Idea: To build the local coordinate systems, we will use clustering to

9.6. CLUSTERING AND LOCAL KL 149

place the origins, and KL to provide the local basis vectors.

4. Remark: Before we begin, lets review some things from Chapters 1 and
2. Suppose that x ∈ M , where M is a k−manifold in IRn. Let w be the
index of the cluster center representing the origin, and let {v1, . . . , vk} be
the basis vectors at c(w). Then the k− dimensional approximation to x

is:

x ≈ c(w) +

k
∑

j=1

αjvj

and if {vj}k

j=1 form an orthonormal basis, then:

[v1 . . .vk]T (x − c(w)) =

α1

...

αk

5. Remark: The error in the reconstruction of x is then:

‖x − c(w) −
k

∑

j=1

αjvj‖ = ‖
n

∑

j=k+1

αjvj‖

6. Exercise: Show that, if {vj}n

j=1 forms an orthonormal set, then

‖
n

∑

j=1

αjvj‖ =

n
∑

j=1

α2
j

7. Exercise: Using the previous exercise, and defining

Pw = [vk+1 . . .vn]T

Show that the reconstruction error for the data point x is:

Ex,w = ‖Pw(x − c(w))‖2 = (x − c(w))T PT
w Pw(x − c(w))

8. Remark: We now proceed to incorporate this error measure into a data
clustering algorithm.

Our Goal: Construct an optimal, locally linear, k−dimensional approx-
imation to a given data set.

150 CHAPTER 9. DATA CLUSTERING

9. VQPCA. An algorithm has been recently suggested to perform the clus-
tering called VQPCA (for Vector Quantization, Principle Component Anal-
ysis)3. This basic idea is this: Each cluster center will have a representa-
tion in IRn with the data, but will also keep a set of local basis vectors.

10. The distance measure for VQPCA Data point x will belong to cluster
center w if:

Ex,w ≤ Ex,i for all i = 1 : p

11. The VQPCA Algorithm

(a) Initialize the cluster centers and local basis vectors. The initial selec-
tion of which data point goes where is done by the standard member-
ship function. Additionally, we must select a target dimension (we
used k in the discussion above).

(b) Sort the data in X using the measure Ex,i.

(c) Reset the centers to be the centroids of the new sets of data.

(d) Reset the basis vectors by using local KL.

(e) Repeat until the maximum number of iterations is attained.

9.6.1 VQPCA in Matlab

Matlab does not have the VQPCA algorithm built in, so we’ll have to write
some code to do it. Again, we separate the code into two pieces as for
Neural Gas. The first file is initVQPCA, and will perform the initialization
process for us. The second file, VQPCA will perform the actual clustering.

(a) The program initVQPCA. Initially, we will need to set up the training
parameters, set up the initial clusters, and perform local KL on the
data in each cluster. Below, I have chosen to use a cell array to store
the basis vectors for each cluster: V.B{i} is a matrix holding the KL
eigenvectors for cluster i.

function V=initVQPCA(X)

%Initialize the structure for the VQPCA algorithm.

[n,m]=size(X); %X is number of points by dimension.

V.numcenters=50; %Number of clusters

V.tmax=20; %max number of iterations

V.tdim=2; %Target dimension

%V.C (number of centers by dimension) holds centers.

%V.B{i}= Basis vectors for ith center.

%Initialize centers by taking random data points.

Id=randr(n);

V.C= X(Id(1:V.numcenters),:);

3Vector Quantization is another name for Data Clustering, and Principle Component Anal-

ysis is another name for KL - We might use the acronym DCKL, instead!

9.6. CLUSTERING AND LOCAL KL 151

clear Id;

%Initially, we sort using standard metric.

D=dist(V.C,X’);

[Md,Id]=min(D);

for i=1:V.numcenters

Id1=find(Id==i);

lenId=length(Id1);

if lenId>0

Y=X(Id1,:);

c=mean(Y);

V.C(i,:)=c;

H=Y-repmat(c,lenId,1);

[V.B{i},s,u]=svd((1/lenId)*H’*H);

else

error(’Empty cluster in initialization’);

end

end

(b) The next program is the main program. Note that we can call VQPCA
to do the initialization first by using only one input argument. To
track the error, V.E is a vector holding the distortion error for each
training iteration.

function V=VQPCA(X,V)

%Main program for the VQPCA Algorithm. There are two ways

%to call this program. If the data set X is the only

%input argument, then VQPCA first initializes the data

%structure V. Otherwise, the algorithm proceeds as if

%V is the initial state.

if nargin==1

V=initVQPCA(X);

end

for t=1:V.tmax

t %Just to keep an eye out for where we are

D=distVQPCA(V,X);

[Md,Id]=min(D’); %Md is an m vector containing min distances

%Id contains the indices of the mins.

V.E(t)=mean(Md);

for i=1:V.numcenters

Id1=find(Id==i);

lenId=length(Id1);

if lenId>0

Y=X(Id1,:);

c=mean(Y);

V.C(i,:)=c;

H=Y-repmat(c,lenId,1);

[V.B{i},s,u]=svd((1/lenId)*H’*H);

else

error(’Empty cluster in VQPCA’);

end

152 CHAPTER 9. DATA CLUSTERING

end

end %End of main loop

(c) Notice that we had to change the metric to use this program to
distVQPCA. This program is included below. We had said previously
that the metric we would use to measure distances for cluster w is:

(x − c(w))T PT
w Pw(x − c(w))

so that the products look like:

(1 x n)(n x n)(n x 1)

However, if we substitute the data point x with the mean subtracted
matrix X , our product would produce a p × p matrix, Z, where:

Z(i, j) = (x(i) − c(w))T PT
w Pw(x(j) − c(w))

all we want from Z is its diagonal. Therefore, we want to compute
the diagonal of the matrix product (assume X is center-subtracted,
and has size n × p):

XT PT
w PwX

We call the non-standard function diagProd to perform this routine.

function D = distVQPCA(V,X)

%D is the distance matrix that is number of points

% by number of centers. D(i,j)=distance (using VQPCA)

% between the ith data point and jth center.

[m,n]=size(X); %X should be number of points by dimension

D=zeros(m,V.numcenters);

%Check target dimension:

if V.tdim==n

return;

end

for i=1:V.numcenters

A=V.B{i}(:,V.tdim+1:n);

Y=X-repmat(V.C(i,:),m,1);

D(:,i)=diagProd(Y*A,A’*Y’)’;

end %End of main i loop

(d) In Figure 9.9, we see the result of running the VQPCA algorithm on
data representing the half sphere. The target dimension in this case
was 2, we used 1, 000 data points (only 500 are shown), and 50 centers
(4 are shown). Furthermore, the picture shows the vectors that were
produced by the KL algorithm, and shows that they approximate
tangent planes on the half sphere.

(e) Exercise: Reproduce the Figure by loading the data in halfsphere,
copy initVQPCA into your own directory (so you can edit it), then
run the VQPCA program. Call plotVQPCA(V,X) to plot the result.

9.6. CLUSTERING AND LOCAL KL 153

−1
−0.8

−0.6
−0.4

−0.2
0

0.2
0.4

0.6
0.8

1

−1

−0.5

0

0.5

1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 9.9: The VQPCA Algorithm applied to data representing a half-sphere.
The target dimension was 2, and shown are 4 representative clusters together
with their KL basis vectors (that approximate local tangent planes).

154 CHAPTER 9. DATA CLUSTERING

9.7 A Comparison of the Techniques

Thus far, we have looked at the LBG algorithm, Kohonen’s SOM, the Neu-
ral Gas algorithm, and VQPCA. We should choose our method according
to what we require for a given problem at hand. While the Neural Gas
algorithm arguable gives the most information, it comes at the greatest
cost. The table below summarizes the algorithms that we have considered.

Part III

Functional Representations

155

