
Intro To Matlab

Matlab (short for Matrix-Laboratory) was originally designed as a front end
for numerical linear algebra routines (numerically finding eigenvalues and
eigenvectors, etc.). Now it is an industry standard for fast development of
numerical solutions to mathematics.

Matlab is different than Maple: Maple is known as a specific example of a
computer algebra system, which means that Maple was designed to work sym-
bolically (e.g., factor a polynomial, compute derivatives and antiderivatives
symbolically, etc.). On the other hand, Matlab was developed for numerical
work. In fact, there are ways of calling Matlab from inside Maple, and vice
versa (although we won’t be doing that).

If you have had a class in computer programming, then Matlab will look
very familiar. There are three ways of running Matlab, and we will consider
each:

• Run Matlab “live”, by typing in commands.

• Run Matlab by running a script file. A script file is just a text file with
the Matlab commands typed in.

• Run Matlab by calling programs that you have written. We’ll see how
to do this in just a moment.

Starting the Matlab Program

First you need an account in the Mathematics computer lab- See your in-
structor if you need an account of if you’ve forgotten your password.

Once you have logged in, open a shell window and type matlab at the
prompt. The splashscreen will come up, and you’ll get a command window
that looks like:

< M A T L A B >

Copyright 1984-2001 The MathWorks, Inc.

Version 6.1.0.450 Release 12.1

May 18 2001

To get started, select "MATLAB Help" from the Help menu.

>>

To exit from Matlab, either type exit from the command window, or
choose Exit from the window menu (under File).

Saving your work

Typically, homework and larger projects should be done by writing a script
rather than typing in commands live. It makes it easy to change and debug,
rather than typing all your work over again!

1

Matlab has a very nice text editor that you can use to type out and save
Matlab functions and scripts- To access the editor, type edit in the Matlab
command window.

All of the Matlab files that we write will end in a *.m suffix (like Example01.m,
etc.). Before we go much further, let’s open up Matlab and try some com-
mands live:

Introductory Commands

1. Arithmetic

Matlab understands all of the basic arithmetic functions, +, -, *, /, ^

are addition, subtraction, multiplication, division and exponentiation.
Type them in just as you would write them. For example, 25 would be
typed as 2^5.

2. Trigonometric Functions

Matlab understands the basic trig functions sine, cosine and tangent
as sin , cos , tan . So, for example, the sine of 3.1 would be typed
as: sin(3.1)

The number π is used so frequently that Matlab has its (approximate)
value built-in as the constant pi. For example, sin(π) is typed as
sin(pi). Note that π uses a lowercase “P”.

3. Exponential and Logarithmic Functions

Matlab does not have the number e built-in as a constant (like π). To
take the number e to a power, use the functional form: ex = exp(x)

So if I want the number e, I would type exp(1), and so on.

For the natural log (log base e), use the notation log. For example,
ln(3) is written as log(3). We will only use the natural log- if in the
future you want a different base, look up the log command by typing
help log.

4. Complex Numbers and Arithmetic

Matlab has complex arithmetic built-in. Either the letter i or j can
be used to represent

√
−1, but a word of caution is in order here:

You can only use i or j for
√
−1 ONLY if you have not previously

defined them. If you think you’re going to use complex numbers, do
not use the letter i for anything but complex arithmetic! Example:
(0.2+3*i)*(5+2*i) will multiply the two complex numbers together
(using complex arithmetic).

2

Helpful Administrative Commands

The following commands are useful as you begin to use Matlab more and
more:

who List all variables currently in use.

whos List all variables, and their sizes.

ls or dir List the contents of the current directory.

cd Change the directory. For example, cd examples would change the
current directory to your file named examples. To go up the structure
instead of down, type cd ..

pwd Tell me where in the directory structure I’m currently at.

where command Tell me where command.m is located.

help command List the help file for the function command. For exam-
ple, to get help on the sine function, type help sin.

demo Lists all the demonstration programs that Matlab came with- This
is fun to look at. We don’t have all of them; you can go to Matlab’s
website to look at more: www.mathworks.com.

A Programming Note: Assignment v. Equality

In computer programming, the equal sign does not mean mathematical equal-
ity. We use the equal sign as an assignment operator. For example,

A=3;

means to assign the value of 3 to the variable A- If A has not been assigned
to anything before, this command will also create that variable.
Definition: In computer programming, A = B means that we will assign
the value of B to the variable A.

Using this, what will the following commands do?

x=5;

x=x+3;

Answer: First, the value 5 is assigned to the variable x. Next, x + 3 is
computed as 8, and finally, the value of 8 is assigned to the variable x.

Not an example: 5=x;, you would get an error- the number 5 is not a
variable.

The assignment operator is also used to label the output of a function.
For example, the following commands stores a vector [1, 2, 3] into the variable
x, then we apply the sine function to each of those numbers and store them
in y to get [sin(1), sin(2), sin(3)]:

3

x=[1,2,3];

y=sin(x);

Matrices

Matlab was originally designed as a “front end” to access LINPACK and EIS-
PACK, which are numerical linear algebra packages written in FORTRAN.
From this beginning, Matlab’s basic data type is the matrix.

I enter the following matrix:

A =

[
1 2 3 4
5 6 7 8

]
as:

A=[1 2 3 4; 5 6 7 8];

or as:

A=[1 2 3 4

5 6 7 8];

Note the use of the semicolon: Inside a matrix, the semicolon indicates the
end of a row. Outside the matrix, the semicolon suppresses Matlab output.
You can also separate numbers using a comma if you’d prefer that. Rows
and columns are entered in a corresponding way, as either a 1× n matrix or
as a n× 1 matrix.

We access elements of the matrix in a natural way. For example, the
(2, 3) element of A is written as A(2,3) in Matlab (in this case, A(2, 3) is 7).
You can change the elements using the assignment operator =. For example,
if we want to change the (1, 3) element of A from 3 to 6, type:

A(1,3)=6;

Special Commands: The colon operator

• a:b

Produces a listing from a to b in a row:

a:b gives [a, a + 1, a + 2, . . . , a + n]

where n is the largest integer so that a + n ≤ b. For example, x = 2 : 9
puts x as a row vector whose elements are the integers from 2 to 9.

• a:b:c

Produces the numbers from a to c by adding b each time:

a:b:c gives [a, a + b, a + 2b, . . . , a + nb]

where n is the largest integer so that a + nb ≤ c. For example, 1 : 2 : 7
returns the numbers 1, 3, 5, 7. Type the following into Matlab to see
what you get: 1:2:8 and 1:0.5:6

4

Matlab commands associated with Arrays

• linspace(a,b,c)

Produces c numbers evenly spaced from the number a to the num-
ber b (inclusive). For example, x=linspace(2,3.5,40) produces 40
numbers evenly spaced beginning with 2 and ending with 3.5.

SHORTCUT: Leaving off the third number c will give you 100 numbers
between a and b (That is, c = 100 is the default value.)

Compare this with the colon operator. We would use the colon operator
if we want to define the length between numbers, and use linspace if
we want to define the endpoints.

• Random arrays (handy if you just need some quick data!)

A=rand(m,n) Produces an m× n array of random numbers (uniformly
distributed) between 0 and 1. If you just want a single random number
between 0 and 1, just type rand

A=randn(m,n) produces an m × n array of random numbers (with a
normal distribution) with zero mean and unit variance. If you want a
single random number (with a normal distribution), just type randn

• A=zeros(m,n) Produces an m× n array of zeros.

• A=ones(m,n) Produces an m× n array of ones.

• A=eye(n) Produces an n× n identity matrix.

• A=repmat(B,m,n) Matrix A is constructed from matrix (or vector) B
by replicating B m times down and n times across.

Example: Let B =

[
1 2
3 4

]
. Then A=repmat(B,2,3) creates the ar-

ray:

A =

1 2 1 2 1 2

3 4 3 4 3 4

1 2 1 2 1 2

3 4 3 4 3 4

Matrix Arithmetic

• Transposition is denoted by the single quote character ’. That is, A’
= AT . (CAUTION: If A contains complex numbers, then A’ is the
conjugate transpose of A, sometimes denoted as A∗ = ĀT)

• Matrix addition and subtraction is performed automatically and is only
defined for matrices of the same size.

5

• Scalar addition. If we want to add a constant c to every item in an
array A, type: A+c

• Scalar Multiplication: We can multiply every number in the array by
a constant: If A is the array and c is the constant, we would write:
B=c*A

• Matrix Multiplication: Use the regular multiplication sign for standard
matrix multiplication. If A is m × n and B is n × p, then A*B is an
m× p matrix, as we did in linear algebra.

• Elementwise Multiplication. We can multiply and divide the elements
of an array A and an array B elementwise by A.*B and A./B

Exponentiation is done in a similar way. To square every element of an
array A, we would write: A.^2 This is the same as saying A.*A

• Functions applied to arrays: Matlab will automatically apply a given
function to each element of the array. For example, sin(A) will apply
the sine function to each element of the array A, and exp(A) will ap-
ply ex to each element of the array. If you write your own functions,
you should always decide ahead of time how you want the function to
operate on a matrix.

Accessing Submatrices

Let A be an m× n array of numbers. Then:
The notation: Yields:

A(i,j) The (i, j)th element

A(i,:) The entire ith row

A(:,j) The entire jth column

A(:,2:5) The 2d to fifth columns, all rows

A(1:4,2:3) A 4× 2 submatrix

Example: What kind of an array would the following command produce?

A([1,3,6],[2,5])

A 3× 2 matrix consisting of the elements:

A(1, 2) A(1, 5)
A(3, 2) A(3, 5)
A(6, 2) A(6, 5)

6

Example: Create a 5× 5 zero array, and change it to:

0 0 0 0 0
0 1 2 3 0
0 4 5 6 0
0 7 8 9 0
0 0 0 0 0

Answer:

A=zeros(5,5); %Create the matrix of zeros

b=[1 2 3;4 5 6; 7 8 9];

A(2:4,2:4)=b;

Note also the use of the % sign. It is used to denote comments; that is, Matlab
would ignore everything on the same line after the % sign.

Adding/Deleting Columns and Rows:

Its straightforward to insert and/or delete rows and columns into a matrix.
Before doing it, we define [] as ”the empty array”: the array with nothing
in it.

In the following, let A be a 4 × 5 array, let b be a 1 × 5 row, and c be a
4× 1 column.

Examples of use (each of these are independent from the previous):
The command: Produces:
A(1,:)=[]; Delete the first row.
A([1,3],:)=[]; Delete rows 1 and 3.
A(:,3)=[]; Delete column 3.
A(:,1:2:5)=[]; Delete the odd columns.
A(1,:)=b; Put b as row 1.
A(:,6)=c; Add c as the last column.
d=[c , A(:,1:3)]; d is c and columns 1− 3 of A.
A=[A(:,1), c, A(:,2:5)]; Insert c as column 2 of A, others shift 1 over.
A=[A(1,:); b; A(2:4,:)]; Insert b as row 2 of A, others shifted 1 down.

Example: Matlab comes with some built-in data sets. One such set is the
image of a clown. For fun, we’ll load the array in, display it, then we’ll
remove all of the even rows and columns, then re-display it:

X=load clown.mat

whos

image(X);

colormap(map);

X(2:2:200,:)=[];

X(:,2:2:320)=[];

image(X);

7

Once you’re done, you may want to clear the memory and the screen:

clear

clc

If you want to re-do the clown again, you do not need to retype it! Use the
up-arrow key to bring back the commands you typed. You can also type the
first few characters, then use the up-arrow key:

X=(up arrow)

Solving Ax = b for x

To solve Ax = b for x, Matlab has two basic commands: x=A\b or x=pinv(A)*b.
The command pinv(A) computes the pseudoinverse of A, which we will dis-
cuss later in the section dealing with the Singular Value Decomposition.

In linear algebra, there were three possible outcomes for solving Ax = b
for x. They were:

1. A unique solution.

2. An infinite number of solutions.

3. No solution.

Matlab will always give exactly one solution. We need to interpret that
solution in the second two cases. In the case of an infinite number of solutions
(we have free variables in this case, also called an underdetermined system),
the two methods may give different answers:

• x=A\b provides the most zeros in x.

• x=pinv(A)*b gives x with the smallest norm.

Example: Let A =

[
1 0 −2
0 1 1

]
, with b =

[
9
3

]
. Then the full solution

is:

x =

 9 + 2t
3− t

t

 (1)

In Matlab, the result of typing x=A\b is x = [0,−15/2,−9/2]T and the result
of typing x=pinv(A)*b is x = [4, 11/2,−5/2].

(MATLAB HINT: You can get Matlab to return numbers as fractions by
typing format rat)

In the case of an overdetermined system (a system with no solution), Mat-
lab will automatically return the least squares solution- that is, the answer
x∗ will be the minimum of ‖Ax− b‖:

‖Ax∗ − b‖ ≤ ‖Ax− b‖, for all x

8

In general, you should always use the forward slash (for help, type help slash):
x=A\b which automatically determines a best numerical method. That is,
sometimes its best (numerically) not to explicitly compute the pseudoinverse
first.

Exercise Set I

1. What is the Matlab command to create the array x which holds the
integers: 2, 5, 8, 11, . . . 89

2. (Referring to the array above) What would the Matlab command be
that zeros out the even-numbered indices (That is, x(2), x(4), x(6), . . .
)?

3. What is the difference in Matlab between typing: x=[1 2 3] and
x=[1,2,3] and x=[1;2;3]? What happens if you type a semicolon
at the end of the commands (i.e., x=[1 2 3];)?

4. (Referring to the last question) For each of those, what happens if you
type x.^2+3? What happens if you forget the period (e.g., x^2+3)

5. What do the following commands do: x=2;3;6;, x=2:3:6;, a=pi:pi:8*pi;

6. Describe the output for each of the following Matlab commands. Recall
that typing a semicolon at the end of the line suppresses Matlab output-
to see the results, leave off the semicolon.

A=rand(3,4);

A([1,2],3)=zeros(2,1);

B=sin(A);

C=B+6;

D=2*B’;

E=A./2;

F=sum(A.*A);

7. What will Matlab do if you type in:

A=rand(3,4);

A(:)

A(7)

NOTE: This is very bad programming style! Don’t do it unless you
know what you’re doing!!

8. What is the Matlab command to perform the following:

(a) Given an array x, add 3 to each of its values.

9

(b) Given an array A, remove its first column and assign the result to
a new array B.

9. What will the following code fragment do?

a=1:10;

for k=1:10

h=ceil(length(a)*rand);

b(k)=a(h);

a(h)=[];

end

Compare this with a=ceil(10*rand(10,1)) and a=randperm(10)

10. Use the Quick Summary sheet to help you write a code fragment that
takes a random matrix X and re-sorts the columns so that the first
column has the smallest size and the last column has the greatest size.

How do I get a Plot?

Here’s a quick example to get us started:

x=linspace(-pi,3*pi,200);

y=sin(x);

plot(x,y);

You’ll see that we had to create a domain array and a range array for the
function. We then plot the arrays. For example,

plot([1,2],[3,4]);

will plot a line segment between the points (1, 3) and (2, 4). So, Matlab’s
plotting feature is drawing small line segments between data points in the
plane.

Examples

1. Matlab can also plot multiple functions on one graph. For example:

x1=linspace(-2,2);

y1=sin(x1);

y2=x1.^2;

x2=linspace(-2,1);

y3=exp(x2);

plot(x1,y1,x1,y2,x2,y3);

produces a single plot with all three functions.

10

2. plot(x1,y1,’*-’);

Plots the function y1, and also plots the symbol * where the data points
are.

3. plot(x1,y1,’k*-’,x2,y3,’r^-’);

Plots the function y1 using a black (k) line with the asterisk at each
data point, PLUS plots the function y2 using a red line with red trian-
gles at each data point.

The following lists all of the built in colors and symbols that Matlab
can use in plotting: (NOTE: You can see this list anytime in Matlab
by typing: help plot)

Code Color Symbol
y yellow . point
m magenta o circle
c cyan x x-mark
r red + plus
g green − solid
b blue ∗ star
w white : dotted
k black −. dashdot

−− dashed

4. The following sequence of commands also puts on a legend, a title, and
relabels the x− and y−axes: Try it!

x=linspace(-2,2);

y1=sin(x);

y2=x.^2;

plot(x,y1,’g*-’,x,y2,’k-.’);

title(’Example One’);

legend(’The Sine Function’,’A Quadratic’);

xlabel(’Dollars’);

ylabel(’Sense’);

5. Other Things: If you look at the plotting window from the last example,
you’ll see lots of things that you can do. For example, there’s a zoom
in and a zoom out feature. You can also edit the colors and symbols
of your plot, and the title, legend and axis labels. Try them out!

Plotting in Three Dimensions

Matlab uses the plot3 command to plot in three dimensions. We won’t be
using this feature here. To get more information, either type help plot3 or
refer to the Matlab Graphics Manual.

11

M-Files: Functions and Scripts

What is a Matlab Function? A Matlab function is a sequence of commands
that uses some input variables and outputs some variables. The following is
a very simple Matlab function:

function y=square(x)

%FUNCTION Y=SQUARE(X)

%This function inputs a number or an array, and

% outputs the squares of the numbers.

y=x.^2;

You would type this in the editor, then save it as square.m (the filename
must be the same name as the function, and it must use the .m extension).

You’ll notice that the first line states “function”. This is always the first
line of a Matlab function. The remarks that follow the first line are very
important. When you type help square, these three lines appear. So when
you write your own functions, you should include comments so that you can
remember how to use it.

The rest of the first line defines what the input variable is (x), and what
the output variable is (y).

A Matlab function can produce multiple outputs. For example:

function [A,b]=randmatrix(n)

%FUNCTION [A,b]=RANDMATRIX(N)

%Produces an 2n x 2n random matrix A and a random

%column vector b.

nn=2*n;

A=rand(nn,nn);

b=rand(nn,1);

To call this function from Matlab, you would write, for example,
[X,y]=randmatrix(10);

You’ll notice that after running this program, the variables internal to the
function (in this case nn) disappear. This is one major difference between a
script and a function:

• A script file is a text file with a sequence of Matlab commands. It is
used by Matlab just as if you were typing the commands in from the
keyboard. You should use a script file whenever you are experimenting
in Matlab- it makes life a lot easier!

• A function in Matlab is like a subroutine in programming. That is,
once the function has been called, all of its variables are local to that
function- you cannot access them from the keyboard, and the variables
are erased once the function is finished.

12

Both scripts and functions should have the .m file extension. We’ll look
at the difference in the Exercise set below.

Exercise Set II

1. The following script file is an example of Newton’s method applied to
a function f(x) = xex − cos(x). Recall that Newton’s Method solves
for x: f(x) = 0 by taking an initial guess, x0, and refines the guess by:

xi+1 = xi −
f(xi)

f ′(xi)

x=0.2; %Initial guess for solution to f(x)=0

for k=1:5

y=x*exp(x)-cos(x);

dy=(x+1)*exp(x)+sin(x);

x=x-(y/dy)

end

Notes about the code:

• We see our first for loop. We’ll discuss what this does in class.

• Note the use of % to make comments.

• Note that x=x-(y/dy) does NOT have a semicolon at the end.

(a) Use the edit feature to type it in and save it as newton1.m

(b) Run the code after you’ve saved it by typing newton1 in the com-
mand window.

(c) Write down Matlab’s output.

(d) To see more significant digits, type format long

(e) Type whos and write down Matlab’s answer.

Before continuing, clear the memory by typing clear

2. Now we’ll change the script file into a Matlab function: Edit the file
we created earlier as newton1.m so that it looks like this:

function [z,y,dy]=newton2(x,n)

%FUNCTION [y,dy]=newton2(x,n)

% performs Newton’s Method on x*exp(x)-cos(x)

% using initial value x and n iterations.

% The output z gives the refined solution,

% the output y gives the function values and dy

13

% the corresponding derivatives.

for k=1:n

y(k) = x*exp(x)-cos(x);

dy(k) = (x+1)*exp(x)+sin(x);

z(k) = x-(y(k)/dy(k));

x = z(k);

end

Now save the file as newton2.m. In the command window, type help

newton2. You should see the help lines come up. Now run the function
by typing in the command window: [x,y,z]=newton2(0.2,5);

3. Let x be a row. What happens if you type plot(x)?

4. Let A be a 4×3 matrix. What happens if you type plot(A)? Compare
this with plot(A’).

5. Write a Matlab command to plot y = e5x, where −2 ≤ x ≤ 2 using
30 points. Plot both the curve and the actual data points themselves,
both in magenta.

6. Write a Matlab function to plot y = sin(x) in red, y = sin(2x) in black,
and y = sin(3x) in green, all on the same plot. You can assume that
x ∈ [−4, 8].

7. When we compute with numbers, some errors can occur. Try typing
each of the following into Matlab, and see what happens:

• 1/0 (Think about what this means before trying it!)

• -1/0

• 0/0

• 1/Inf

These give us some extensions to arithmetic- Matlab has ways of dealing
with infinity (Inf) and “Not-A-Number” (NaN).

8. Try to reason out what you think Matlab will do with each of the
following, then type it in and record what you get:

x=[1 3 2 1 3];

max(x)

find(x==max(x))

sort(x)

mean(x)

sum(x)

14

