
Chapter 11

Radial Basis Functions

In this chapter, we begin the modeling of nonlinear relationships in data- in
particular, we build up the machinery that will model arbitrary continuous
maps from our domain set in IRn to the desired target set in IRm. The fact that
our theory can handle any relationship is both satisfying (we are approximating
something that theoretically exists) and unsatisfying (we might end up modeling
the data and the noise.

We’ve brought up these conflicting goals before- We can build more and
more accurate models by increasing the complexity and number of parameters
used, but we do so at the expense of generalization. We will see this tension
in the sections below, but before going further into the nonlinear functions, we
first want to look at the general process of modeling data with functions.

11.1 The Process of Function Approximation

There are an infinite number of functions that can model a finite set of domain,
range pairings. With that in mind, it will come as no surprise that we will need
to make some decisions about what kind of data we’re working with, and what
kinds of functions make sense to us- Although many of the algorithms in this
chapter can be thought of as “black boxes”, we still need to always be sure that
we assume only as much as necessary, and that the outcome makes sense.

To begin, consider the data. There are two distinct problems in modeling
functions from data: Interpolation and Regression. Interpolation is the require-
ment that the function we’re building, f , models each data point exactly:

f(xi) = yi

In regression, we minimize the error between the desired values, yi, and the
function output, f(xi). If we use p data points, then we minimize an error
function- for example, the sum of squared error:

min
α

p
∑

i=1

‖f(xi)− yi‖2

175

176 CHAPTER 11. RADIAL BASIS FUNCTIONS

where the function f depends on the parameters in α.
You may be asking yourself why more accuracy is not always better? The

answer is: it depends. For some problems, the data that you are given is
extremely accurate- In those cases, accuracy may be of primary importance.
But, most often, the data has noise and in that case, too much accuracy means
that you’re modeling the noise.

In regression problems, we will always break our data into two groups: a
training set and a testing set. It is up to personal preference, but people tend
to use about 20% of the data to build the model (get the model parameters),
and use the remaining 80% of the data to test how well the model performs (or
generalizes). Occasionally, there is a third set of data required- a validation set
that is also used to choose the model parameters (for example, to prune or add
nodes to the network), but we won’t use this set here. By using distinct data
sets, we hope to get as much accuracy as we can, while still maintaining a good
error on unseen data- We will see how this works later.

11.2 Using Polynomials to Build Functions

We may used a fixed set of basis vectors to build up a function- For example,
when we construct a Taylor series for a function, we are using a polynomial ap-
proximations to get better and better approximations, and if the error between
the series and the function goes to zero as the degree increases, we say that the
function is analytic.

If we have two data points, we can construct a line that interpolates those
points. Given three points, we can construct an interpolating parabola. In fact,
given p + 1 points, we can construct a degree p polynomial that interpolates
that data.

We begin with a model function, a polynomial of degree p:

f(x) = a0 + a1x + a2x
2 + . . . apx

p

and using the data, we construct a set of p + 1 equations (there are p + 1
coefficients in a degree p polynomial):

y1 = apx
p
1 + ap−2x

p−2
1 + . . . + a1x1 + a0

y2 = apx
p
2 + ap−2x

p−2
2 + . . . + a1x2 + a0

y3 = apx
p
3 + ap−2x

p−2
3 + . . . + a1x3 + a0

... · · ·
yp+1 = apx

p
p+1 + ap−2x

p−2
p+1 + . . . + a1xp+1 + a0

And writing this as a matrix-vector equation:











xp
1 xp−1

1 xp−2
1 . . . x1 1

xp
2 xp−1

2 xp−2
2 . . . x2 1

...
...

...

xp
p+1 xp−1

p+1 xp−2
p+1 . . . xp+1 1

























ap

ap−1

...
a1

a0















=















y1

y2

...
yp

yp+1















(11.1)

11.2. USING POLYNOMIALS TO BUILD FUNCTIONS 177

or more concisely as V a = y, where V is called the Vandermonde matrix associ-
ated with the data points x1, . . . , xp. For future reference, note that in Matlab,
there is a built in function, vander, but we could build V by taking the domain
data as a single column vector x, then form the p + 1 columns as powers of this
vector:

V=[x.^p x.^(p-1) ... x.^2 x x.^0]

The matrix V is square, so it may be invertible. In fact,

Example

Consider the following example in Matlab:

>> x=[-1;3;2]

x =

-1

3

2

>> vander(x)

ans =

1 -1 1

9 3 1

4 2 1

Theorem: Given p real numbers x1, x2, · · · , xp, then the determinant of the
p × p Vandermonde matrix computed by taking columns as increasing powers
of the vector (different than Matlab) is:

det(V) =
∏

1≤i<j≤p

(xj − xi)

We’ll show this for a couple of simple matrices in the exercises. There is a subtle
note to be aware of- We had to make a slight change in the definition in order
to get the formula.

For example, the determinant of our previous 3×3 matrix is (double products
can be visualized best as an array):

(x2 − x1)(x3 − x2) (x3 − x1) = (3−−1)(2− 3)(2−−1) = −12

In Matlab, look at the following:

det(vander(x))

det([x.^0 x.^1 x.^2])

(This is an unfortunate consequence of how Matlab codes up the matrix, but
it will not matter for us). Of great importance to us is the following Corollary,
that follows immediately from the theorem:
Corollary: If the data points x1, . . . , xp are all distinct, then the Vandermonde
matrix is invertible.

178 CHAPTER 11. RADIAL BASIS FUNCTIONS

−5 0 5
−0.5

0

0.5

1

1.5

2

Figure 11.1: An example of the wild oscillations one can get in interpolating
data with a high degree polynomial. In this case, we are interpolating 11 data
points (asterisks) with a degree 10 polynomial (dotted curve) from the function
represented by a solid curve. This is also an example of excellent accuracy on
the interpolation data points, but terrible generalization off those points.

This theorem tells us that we can solve the interpolation problem by simply
inverting the Vandermonde matrix:

a = V −1y

Using polynomials can be bad for interpolation, as we explore more deeply in a
course in Numerical Analysis. For now, consider interpolating a fairly nice and
smooth function,

f(x) =
1

1 + x2

over eleven evenly spaced points between (and including) -5 and 5. Construct
the degree 10 polynomial, and the result is shown in Figure 11.1. The graph
shows the actual function (black curve), the interpolating points (black aster-
isks), and the degree 10 polynomial between interpolating points (dashed curve).
As we can see, there is some really bad generalization- And these wild oscilla-
tions we see are typical of polynomials of large degree.

To partially solve this bad generalization, we will turn to the regression
problem. In this case, we will try to fit a polynomial of much smaller degree k
to the p data points, with k << p.

We can do this quite simply by removing the columns of the Vandermonde
matrix that we do not need- or equivalently, in the exercises we will write a

11.2. USING POLYNOMIALS TO BUILD FUNCTIONS 179

function, vander1.m that will build the appropriate p× k + 1 matrix, and then
we have the matrix-vector equation:

V a = y

Of course now the matrix V is not invertible, so we find the least squares solution
to the equation using our pseudo-inverse function (either one we constructed
from the SVD or Matlab’s built-in function).

Using regression rather than interpolation hopefully solves one problem (the
wild oscillations), but introduces a new problem: What should the degree of the
polynomial be? Low degree polynomials do a great job at giving us the general
trend of the data, but may be highly inaccurate. High degree polynomials may
be exact at the data points used for training, but wildly inaccurate in other
places.

There is another reason not to use polynomials. Here is a simple example
that will lead us into it:

If you use a polynomial in two variables to approximate a function how many
model parameters (unknowns) are there to find?

• If the domain is two dimensional, z = f(x, y), we’ll need to construct poly-
nomials in two variables, x and y. The model equation has 6 parameters:

p(x, y) = a0 + a1x + a2y + a3xy + a4x
2 + a5y

2

• If there are 3 domain variables, w = f(x, y, z), a polynomial of degree 2
has 10 parameters:

p(x, y, z) = a0 +a1x+a2y +a3z +a4xy +a5xz +a6yz +a7x
2 +a8y

2 +a9z
2

• If there are n domain variables, a polynomial of degree 2 has (n2 + 3n +
2)/2 parameters (see the exercises in this section). For example, using a
quite modest degree 2 polynomial with 10 domain variables would take 66
parameters!

The point we want to make in this introduction is: Polynomials do not work
well for function building. The explosion in the number of parameters needed
for regression is known as the curse of dimensionality. Recent results [3, 4]
have shown that any fixed basis (one that does not depend on the data) will
suffer from the curse of dimensionality, and it is this that leads us on to consider
a different type of model for nonlinear functions.

Exercises

1. Prove the formula for the determinant of the Vandermonde matrix for the
special cases of the 3 × 3 matrix. Start by row reducing (then find the
values for the ??):

∣

∣

∣

∣

∣

∣

1 x1 x2
1

1 x2 x2
2

1 x3 x2
3

∣

∣

∣

∣

∣

∣

→ (???)

∣

∣

∣

∣

∣

∣

1 x1 x2
1

0 1 ??
0 0 1

∣

∣

∣

∣

∣

∣

180 CHAPTER 11. RADIAL BASIS FUNCTIONS

2. Rewrite Matlab’s vander command so that Y=vander1(X,k) where X is
m× 1 (m is the number of points), k − 1 is the degree of the polynomial
and Y is the m× k matrix whose rows look like those in Equation 11.1.

3. Download and run the sample Matlab file SampleInterp.m:

f=inline(’1./(1+12*x.^2)’);

%% Example 1: Seven points

%First define the points for the polynomial:

xp=linspace(-1,1,7);

yp=f(xp);

%Find the coefficients using the Vandermonde matrix:

V=vander(xp);

C=V\yp’;

xx=linspace(-1,1,200); %Pts for f, P

yy1=f(xx);

yy2=polyval(C,xx);

plot(xp,yp,’r*’,xx,yy1,xx,yy2);

legend(’Data’,’f(x)’,’Polynomial’)

title(’Interpolation using 7 points, Degree 6 poly’)

%% Example 2: 15 Points

%First define the points for the polynomial:

xp=linspace(-1,1,15);

yp=f(xp);

%Find the coefficients using the Vandermonde matrix:

V=vander(xp);

C=V\yp’;

xx=linspace(-1,1,200); %Pts for f, P

yy1=f(xx);

yy2=polyval(C,xx);

figure(2)

plot(xp,yp,’r*’,xx,yy1,xx,yy2);

title(’Interpolation using 15 points, Degree 14 Poly’)

legend(’Data’,’f(x)’,’Polynomial’)

%% Example 3: 30 Points, degree 9

%First define the points for the polynomial:

xp=linspace(-1,1,30);

yp=f(xp);

%Find the coefficients using vander1.m (written by us)

11.3. DISTANCE MATRICES 181

V=vander1(xp’,10);

C=V\yp’;

xx=linspace(-1,1,200); %Pts for f, P

yy1=f(xx);

yy2=polyval(C,xx);

figure(3)

plot(xp,yp,’r*’,xx,yy1,xx,yy2);

title(’Interpolation using 30 points, Degree 10 Poly’)

legend(’Data’,’f(x)’,’Polynomial’)

Note: In the code, we use one set of domain, range pairs to build up the
model (get the values of the coefficients), but then we use a different set
of domain, range pairs to see how well the model performs. We refer to
these sets of data as the training and testing sets.

Which polynomials work “best”?

4. Show that for a second order polynomial in dimension n, there are:

n2 + 3n + 2

2
=

(n + 2)!

2!n!

unknown constants, or parameters.

5. In general, if we use a polynomial of degree d in dimension n, there are

(n + d)!

d! n!
≈ nd

parameters. How many parameters do we have if we wish to use a poly-
nomial of degree 10 in dimension 5?

6. Suppose that we have a unit box in n dimensions (corners lie at the points
(±1,±1, . . . ,±1)), and we wish to subdivide each edge by cutting it into
k equal pieces. Verify that there are kn sub-boxes. Consider what this
number will be if k is any positive integer, and n is conservatively large,
say n = 1000! This rules out any simple, general, “look-up table” type of
solution to the regression problem.

11.3 Distance Matrices

A certain matrix called the Euclidean Distance matrix (EDM) will play a natural
role in our function buildling problem. Before getting too far, let’s define it.

Definition: The Euclidean Distance Matrix (EDM) Let {x(i)}P
i=1 be

a set of points in IRn. Let the matrix A be the P by P matrix so that the
(i, j)th entry of A is given by:

Aij = ‖x(i) − x(j)‖2

182 CHAPTER 11. RADIAL BASIS FUNCTIONS

Then A is the Euclidean Distance Matrix (EDM) for the data set {x(i)}P
i=1.

Example: Find the EDM for the one dimensional data: −1, 2, 3:
SOLUTION:





x1 − x1		x1 − x2		x1 − x3
x1 − x2		x2 − x2		x2 − x3
x3 − x1		x3 − x2		x3 − x3



 =





0 3 4
3 0 1
4 1 0





You might note for future reference that the EDM does not depend on the
dimension of the data, but simply on the number of data points. We would get
a 3 × 3 matrix, for example, even if we had three data points in IR1000. There
is another nice feature about the EDM:
Theorem (Schoenberg, 1937). Let {x1, x2, . . . ,xp} be p distinct points in
IRn. Then the EDM is invertible.

This theorem implies that, if {x1, x2, . . . ,xp} are p distinct points in IRn,
and {y1, . . . , yp} are points in IR, then there exists a function f : IRn → IR such
that:

f(x) = α1‖x− x1‖+ . . . + αp‖x− xp‖ (11.2)

and f(xi) = yi. Therefore, this function f solves the interpolation problem. In
matrix form, we are solving:

Aα = Y

where Aij = ‖xi − xj‖ and Y is a column vector.
Example: Use the EDM to solve the interpolation using the data points:

(−1, 5) (2,−7) (3,−5)

SOLUTION: The model function is:

y = α1|x + 1|+ α2|x− 2|+ α3|x− 3|

Substituting in the data, we get the matrix equation:




0 3 4
3 0 1
4 1 0









α1

α2

α3



 =





5
−7
−5



 ⇒





α1

α2

α3



 =





−2
3
−1





So the function is:

f(x) = −2|x + 1|+ 3|x− 2| − |x− 3|

In Matlab, we could solve and plot the function:

x=[-1;2;3]; y=[5;-7;-5];

A=edm(x,x);

c=A\y;

xx=linspace(-2,4); %xx is 1 x 100

v=edm(xx’,x); %v is 100 x 3

yy=v*c;

plot(x,y,’r*’,xx,yy);

11.3. DISTANCE MATRICES 183

Coding the EDM

Computing the Euclidean Distance Matrix is straightforward in theory, but we
should be careful in computing it, especially if we begin to have a lot of data.

We will build the code to assume that the matrices are organized as Number

of Points × Dimension, and give an error message if that is not true. Here is
our code. Be sure to write it up and save it in Matlab:

function z=edm(w,p)

% A=edm(w,p)

% Input: w, number of points by dimension

% Input: p is number of points by dimension

% Ouput: Matrix z, number points in w by number pts in p

% which is the distance from one point to another

[S,R] = size(w);

[Q,R2] = size(p);

p=p’; %Easier to compute this way

%Error Check:

if (R ~= R2), error(’Inner matrix dimensions do not match.\n’), end

z = zeros(S,Q);

if (Q<S)

p = p’;

copies = zeros(1,S);

for q=1:Q

z(:,q) = sum((w-p(q+copies,:)).^2,2);

end

else

w = w’;

copies = zeros(1,Q);

for i=1:S

z(i,:) = sum((w(:,i+copies)-p).^2,1);

end

end

z = z.^0.5;

Exercises

1. Revise the Matlab code given for the interpolation problem to work with
the following data, where X represents three points in IR2 and Y represents
three points in IR3. Notice that in this case, we will not be able to plot the
resulting function, but show that you do get Y with your model. (Hint: Be
sure to enter X and Y as their transposes to get EDM to work correctly).

X =

[

1 0 −1
0 1 1

]

Y =





2 1 −1
1 1 1
−1 1 1





184 CHAPTER 11. RADIAL BASIS FUNCTIONS

2. As we saw in Chapter 2, the invertibility of a matrix depends on its small-
est eigenvalue. A recent theorem states “how invertible” the EDM is:

Theorem [2]: Let {x1, x2, . . . ,xp} be p distinct points in IRn. Let ǫ be
the smallest element in the EDM, so that

‖xi − xj‖ ≥ ǫ, i 6= j

Then we have that all eigenvalues λi are all bounded away from the origin-
there is a constant c so that:

λi ≥
cǫ√
n

(11.3)

Let’s examine what this is saying by verifying it with data in IR4. In
Matlab, randomly select 50 points in IR4, and compute the eigenvalues of
the EDM and the minimum off-diagonal value of the EDM. Repeat 100
times, and plot the pairs (xi, yi), where xi is the minimum off-diagonal on
the ith trial, and yi is the smallest eigenvalue. Include the line (xi, xi/2)
for reference.

3. An interesting problem to think about: A problem that is related
to using the EDM is “Multidimensional Scaling”: That is, given a p × p
distance or similarity matrix that represents how similar p objects are to
one another, construct a set of data points in IRn (n to be determined,
but typically 2 or 3) so that the EDM is as close as possible to the given
similarity matrix. A classic test of new algorithms is to give the algorithm
a matrix of distances between cities on the map, and see if it produces a
close approximation of where those cities are. Of course, one configura-
tion could be given a rigid rotation and give an equivalent EDM, so the
solutions are not unique.

11.4 Radial Basis Functions

Definition: A radial basis function (RBF) is a function of the distance of the
point to the origin. That is, φ is an RBF if φ(x) = φ(‖x‖), so that φ acts on a
vector in IRn, but only through the norm. This means that φ can be thought of
as a scalar function.

This ties us in directly to the EDM, and we modify Equation 11.2 by applying
φ. This gives us the model function we will use in RBFs:

f(x) = α1φ (‖x− x1‖) + . . . + αpφ (‖x− xp‖)

where φ : IR+ → IR, is typically nonlinear and is referred to as the transfer

function. The following table gives several common used formulas for φ.

11.4. RADIAL BASIS FUNCTIONS 185

Definition: The Transfer Function and Matrix Let φ : IR+ → IR be
chosen from the list below.

φ(r, σ) = exp

(−r2

σ2

)

Gaussian

φ(r) = r3 Cubic

φ(r) = r2 log(r) Thin Plate Spline

φ(r) =
1

r + 1
Cauchy

φ(r, β) =
√

r2 + β Multiquadric

φ(r, β) =
1

√

r2 + β
Inverse Multiquadric

φ(r) = r Identity

We will use the Matlab notation for applying the scalar function φ to a matrix-
φ will be applied element-wise so that:

φ(A)ij = φ(Aij)

When φ is applied to the EDM, the result is referred to as the transfer matrix.
There are other transfer functions one can choose. For a broader definition of

transfer functions, see Micchelli [30]. We will examine the effects of the transfer
function on the radial approximation shortly, but we focus on a few of them.
Matlab, for example, uses only a Gaussian transfer function, which may have
some undesired consequences (we’ll see in the exercises).

Once we decide on which transfer function we can use, we use the data to
find the coefficients α1, . . . , αp by setting up the p equations:

α1φ (‖x1 − x1‖) + . . . + αpφ (‖x1 − xp‖) = y1

α1φ (‖x2 − x1‖) + . . . + αpφ (‖x2 − xp‖) = y2

...
...

α1φ (‖xp − x1‖) + . . . + αpφ (‖xp − xp‖) = yp

As long as the vectors xi 6= xj , for i 6= j, then the p× p matrix in this system
of equations will be invertible. The resulting function will interpolate the data
points.

In order to balance the accuracy versus the complexity of our function, rather
than using all p data points in the model:

f(x) = α1φ (‖x− x1‖) + . . . + αpφ (‖x− xp‖)

Following [5], we will use k points, c1, . . . , ck for the function:

f(x) = α1φ (‖x− c1‖) + . . . + αpφ (‖x− ck‖)

186 CHAPTER 11. RADIAL BASIS FUNCTIONS

l

...

l

xn

x1

x ∈ IRn y ∈ IRm

p p p p p
p p p p p

p p p p p
p p p p p

p p

p p p p p p p p p p p p p p p p p p pp p

p p p
p p p
p p p
p p p
p p p
p p p
p p p
p p p
p p p
p p p
p p p
p p p
p p p

p p p
p p p
p p p
p p p
p p p
p p p
p p p
p p p
p p p
p p p
p

p p

l

l

l

...

φ(‖x− c1‖)

φ(‖x− c2‖)

φ(‖x− ck‖)

l

...

l

ym

y1

p p p p p p p p p p p p p p p p p p p

p p

p p p p p p p p p p p p p p p pp p

p p p
p p p
p p p
p p p
p p p
p p p
p p p
p p p
p p p
p p p
p p p
p p p
p

p p p p
p p p p

p p p p
p p p p

p p p

Figure 11.2: The RBF as a neural network. The input layer has as many nodes
as input dimensions. The middle layer has k nodes, one for each center ck. The
processing at the middle layer is to first compute the distance from the input
vector to the corresponding center, then apply φ. The resulting scalar value is
passed along to the output layer, y. The last layer is linear in that we will be
taking linear combinations of the values of the middle layer.

We will refer to these vectors c’s as the centers of the RBF, and typically k will
be much smaller than p, the number of data points.

Of course, the simpler function comes at some cost: Interpolation becomes
regression, and we have to decide on k and how to place the centers.

Example: If we use one center at the origin, take x to be in the plane, y
be scalar, and φ(r) = r3, then:

f(x1, x2) = α(x2
1 + x2

2)
3/2

whose graph is a cone in the plane (vertex at the origin, opening upwards).

Example: Let x, y be scalars, and let us use two centers- c1 = −1 and
c2 = 2. The transfer function will be the Gaussian with σ = 1. Then the model
function is:

f(x) = α1e
−(x+1)2 + α2e

−(x−2)2

so the graph will be the linear combination of two Gaussians.

We will generalize the function slightly to assume that the output is multi-
dimensional; that the vector of coefficients, α, becomes a matrix of coefficients,
W . We can visualize the RBF as a neural network, as seen in Figure 11.2.

11.4. RADIAL BASIS FUNCTIONS 187

In a slightly different diagrammatic form, we might think of the RBF network
as a layer of two mappings, the first is a mapping of IRn to IRk, then to the
output layer, IRm:

x→



















‖x− c1‖

‖x− c2‖
...

‖x− ck‖



















→ φ





































‖x− c1‖

‖x− c2‖
...

‖x− ck‖





































→ (11.4)

W



















φ(‖x− c1‖)

φ(‖x− c2‖)
...

φ(‖x − ck‖)



















=



















y1

y2

...

ym



















where W is an m× k matrix of weights. As is our usual practice, we could add
a bias vector (shown) as well and keep the problem linear by increasing the size
of W to m× k + 1

In fact, we are now ready to train the RBF. We see that, once the centers
(or points) c1, . . . , ck have been fixed, we train the network by using the data
to find the matrix W (and possibly the bias vector b). As we’ve seen before,
this can be done at once with all the data (as a batch), or we can update the
weights and biases using Widrow-Hoff.

11.4.1 Training the RBF

Training should begin by separating the data into a training and testing set.
Having done that, we decide on the number of centers and their placement
(these decisions will be investigated more in the next section). We also decide
on the transfer function φ.

Training proceeds by setting up the linear algebra problem for the weights
and biases- We use the diagram in Equation 11.4 for each input x output y

pairing to build the system of equations which we will solve using the least
squares error.

Let Y be the m× p matrix constructed so that we have p column vectors in
IRm. In matrix form, the system of equations we need to solve is summarized
as:

WΦ = Y (11.5)

where Φ is k × p- transposed from before; think of the jth column in terms of
subtracting the jth data point from each of the k centers:

Φi,j = φ(‖xj − ci‖)

188 CHAPTER 11. RADIAL BASIS FUNCTIONS

We should increase Φ to k +1× p by appending a final row of ones (for the bias
terms). This makes the matrix of weights, W have size m× k + 1 as mentioned
previously. The last column of W corresponds to a vector of biases in IRm.

Finally, we solve for W by using the pseudo-inverse of Φ (either with Matlab’s
built in pinv command or by using the SVD):

W = Y Φ†

Now that we have the weights and biases, we can evaluate our RBF network at
a new point by using the RBF diagram as a guide (also see the implementation
below).

11.4.2 Matlab Notes

Although Matlab has some RBF commands built-in, it is good practice to
program these routines in ourselves- Especially since the batch training (least
squares solution) is straightforward.

We already have the EDM command to build a matrix of distances. I like
to have an additional function, rbf1.m that will compute any of the transfer
functions φ that I would like- and then apply that to any kind of input- scalar,
vector or matrix.

We should write a routine that will input a training set consisting of a matrix
X and Y , a way of choosing φ, and a set of centers C. It should output the
weight matrix W (and I would go ahead and separate the bias vector b.

When you’re done writing, it is convenient to be able to write, as Matlab:

Xtrain=...

Xtest=...

Ytrain=...

Ytest=...

Centers=...

phi=2; %Choose a number from the list

[W,b]=rbfTrain1(Xtrain,Ytrain,Centers,phi);

Z=rbfTest(Xtest,Centers,phi,W,b);

To illustrate what happens with training sessions, let’s take a look at some.
In the following case, we show how the error on the training set tends to go
down as we increase the number of centers, but the error on the test set goes up
after a while (that is the point at which we would want to stop adding centers).
Here is the code that produced the graph in Figure 11.4.2:

X=randn(1500,2);

Y=exp(-(X(:,1).^2+X(:,2).^2)./4)+0.5*randn(1500,1); %Actual data

temp=randperm(1500);

Xtrain=X(temp(1:300),:); Xtest=X(temp(301:end),:);

11.4. RADIAL BASIS FUNCTIONS 189

0 5 10 15 20
0.0146

0.0148

0.015

0.0152

0.0154

0.0156

0.0158

0.016
Average error on test set by number of centers used

Figure 11.3: The error, averaged over 30 random placements of the centers, of
the error on the testing set. The horizontal axis shows the number of centers.
As we predicted, the error on the test set initially goes down, but begins to
increase as we begin to model the noise in the training set. We would want to
stop adding centers at the bottom of the valley shown.

Ytrain=Y(temp(1:300),:); Ytest=Y(temp(301:end),:);

for k=1:30

for j=1:20

NumClusters=j;

temp=randperm(300);

C=Xtrain(temp(1:NumClusters),:);

A=edm(Xtrain,C);

Phi=rbf1(A,1,3);

alpha=pinv(Phi)*Ytrain;

TrainErr(k,j)=(1/length(Ytrain))*norm(Phi*alpha-Ytrain);

%Compute the error using all the data:

A=edm(Xtest,C);

Phi=rbf1(A,1,3);

Z=Phi*alpha;

Err(k,j)=(1/length(Ytest))*norm(Ytest-Z);

end

end

figure(1)

plot(mean(TrainErr));

190 CHAPTER 11. RADIAL BASIS FUNCTIONS

title(’Training error tends to always decrease...’);

figure(2)

plot(mean(Err));

title(’Average error on test set by number of centers used’);

Using Matlab’s Neural Networks Toolbox

For some reason Matlab’s Neural Network Toolbox only has Gaussian RBFs. It
uses the an approximation to the width as described in the exercises below, and
gives you the option of running interpolation or regression, and the regression
uses Orthogonal Least Squares, which is described in the next section. Using it
is fairly simple, and here are a couple of sample training sessions (from the help
documentation):

P = -1:.1:1;

T = [-.9602 -.5770 -.0729 .3771 .6405 .6600 .4609 ...

.1336 -.2013 -.4344 -.5000 -.3930 -.1647 .0988 ...

.3072 .3960 .3449 .1816 -.0312 -.2189 -.3201];

eg = 0.02; % sum-squared error goal

sc = 1; % width of Gaussian

net = newrb(P,T,eg,sc);

%Test the network on a new data set X:

X = -1:.01:1;

Y = sim(net,X);

plot(P,T,’+’,X,Y,’k-’);

Issues coming up

Using an RBF so far, we need to make 2 decisions:

1. What should the transfer function be? If it has an extra parameter (like
the Gaussian), what should it be?

There is no generally accepted answer to this question. We might have
some external reason for choosing one function over another, and some
people stay mainly with their personal favorite.

Having said that, there are some reasons for choosing the Gaussian in
that the exponential function has some attracting statistical properties.
There is a rule of thumb for choosing the width of the Gaussian, which is
explored further in the exercises:

The width should be wider than the distance between data points, but
smaller than the diameter of the set.

2. How many centers should I use, and where should I put them?

11.4. RADIAL BASIS FUNCTIONS 191

Generally speaking, use as few centers as possible, while still maintaining
a desired level of accuracy. Remember that we can easily zero out the
error on the training set, so this is where the testing set can help balance
the tradeoff between accuracy and simplicity of the model. In the next
section, we will look at an algorithm for choosing centers.

Exercises

1. Write the Matlab code discussed to duplicate the sessions we looked at
previously:

• function Phi=rbf1(X,C,phi,opt) where we input data in the ma-
trix X , a matrix of centers C, and a number corresponding to the non-
linear function φ. The last input is optional, depending on whether
φ(r) depends on any other parameters.

• function [W,b]=rbfTrain(X,Y,C,phi,opt) Constructs and solves
the RBF Equation 11.5

• function Z=rbfTest(X,C,W,b,phi,opt)Construct the RBF Equa-
tion and output the result as Z (an m× p matrix of outputs).

2. The following exercises will consider how we might set the width of the
Gaussian transfer function.

(a) We will approximate:

(

∫ b

−b

e−x2

dx

)2

=

∫ b

−b

∫ b

−b

e−(x2+y2) dx dy ≈
∫ ∫

B

e−(x2+y2) dB

where B is the disk of radius b. Show that this last integral is:

π
(

1− e−b2
)

(b) Using the previous exercise, conclude that:

∫ ∞

−∞

e
−x

2

σ
2 dx = σ

√
π

(c) We’ll make a working definition of the width of the Gaussian: It is the
value a so that k percentage of the area is between −a and a (so k is
between 0 and 1). The actual value of k will be problem-dependent.

Use the previous two exercises to show that our working definition of
the “width” a, means that, given a we would like to find σ so that:

∫ a

−a

e
−x

2

σ
2 dx ≈ k

∫ ∞

−∞

e
−x

2

σ
2 dx

192 CHAPTER 11. RADIAL BASIS FUNCTIONS

(d) Show that the last exercise implies that, if we are given k and a, then
we should take σ to be:

σ =
a

√

− ln(1− k2)
(11.6)

The previous exercises give some justification to the following approxima-
tion for σ (See, for example, designrb, which is in the file newrb.m):

σ =
a

√

− ln(0.5)

11.5 Orthogonal Least Squares

The following is a summary of the work in the reference [7]. We present the
multidimensional extension that is the basis of the method used in Matlab’s
subfunction: designrb, which can be found in the file newrb. (Hint: To find
the file, in Matlab type which newrb). We go through this algorithm in detail
so that we can modify it to suit our needs.

Recall that our matrix equation is:

WΦ = Y

where, using k centers, our p input data points are in IRn, output in IRm, then
W is m× (k + 1), Φ is (k + 1)× p, and Y is m× p.

Begin with k = p. The basic algorithm does the following:

1. Look for the row of Φ (in IRp) that most closely points in the same direction
as a row of Y .

2. Take that row out of Φ (which makes Φ smaller), then deflate the remain-
ing rows. Another way to say this is that we remove the component of the
columns of Φ that point in the direction of our “winner” (much like the
Gram-Schmidt process).

3. Repeat.

Before continuing, let’s review the linear algebra by doing a few exercises
that we’ll need to perform the operations listed above.

• Show that, if we have a set of vectors X = [x1, . . . ,xk] and a vector y,
then the vector in X that most closely points in the direction of y (or −y)
is found by computing the maximum of:

(

xT
i y

‖xi‖‖y‖

)2

(11.7)

11.5. ORTHOGONAL LEAST SQUARES 193

• Recall that:
vvT

‖v‖2 (11.8)

is an orthogonal projector to the one dimensional subspace spanned by v.
Using this, show that the following set of Matlab commands will return a
matrix whose columns are in the orthogonal complement of the subspace
spanned by v. That is, v is orthogonal to the columns of the final matrix
in the computation:

a=v’*P/(v’*v);

P=P-v*a;

• Show that, if X = [x1, . . . ,xk] are column vectors, then

sum(X.*X)=
(

‖x1‖2, . . . , ‖xk‖2
)

Write a Matlab function, mnormal that will input a matrix, and output
the matrix with normalized columns (comes in handy!).

• Let X = [x1, . . . ,xm] and Y = [y1, . . . ,yk]. Show that the (i, j) compo-
nent of X’*Y is given by:

xT
i yj

• Verify that the following Matlab commands solves the (least squares) equa-
tion: wp + b = t for w and b:

[pr,pc]=size(p);

x=t/[p;ones(1,pc)];

w=x(:,1:pr);

b=x(:,pr+1);

• What does the following set of Matlab commands do? (Assume M is a
matrix)

replace=find(isnan(M));

M(replace)=zeros(size(replace));

We are now ready to examine the Matlab function newrb and its main sub-
function, designrb. These programs use the OLS algorithm [7], which we de-
scribe below.

You might compare the notation below to the actual Matlab code.

Algorithm. Orthogonal Least Squares for RBFs

Input the domain and range pairs (p, t) the error goal and gaussian spread
(eg, sp).

Output the centers w1, the reciprocal of the widths, 1σ, are stored in b1, the
weights ωij are in w2 and the biases bj are in the vector b2. The other output
arguments are optional.

194 CHAPTER 11. RADIAL BASIS FUNCTIONS

function [w1,b1,w2,b2,k,tr] = designrb(p,t,eg,sp)

[r,q] = size(p);

[s2,q] = size(t);

b = sqrt(-log(.5))/sp;

% RADIAL BASIS LAYER OUTPUTS

P = radbas(dist(p’,p)*b);

PP = sum(P.*P)’;

d = t’;

dd = sum(d.*d)’;

1. Exercise: For each matrix above, write down the size (in terms of “num-
ber of points” and “dimension”).

So far, we’ve constructed the interpolation matrix P=ΦT , and initialized
some of our variables. We’re now ready to initialize the algorithm:

% CALCULATE "ERRORS" ASSOCIATED WITH VECTORS

e = ((P’ * d)’ .^ 2) ./ (dd * PP’);

2. Exercise: What is the size of e? Show that the (j, k) component of e is
given by (in terms of our previous notation):

φT
k yj

yT
j yjφ

T
k φk

In view of Equation 11.7, what does e represent?

In the following lines, there is some intriguing code. The integer pick is
used to store our column choice. The vector used will be used to store the
columns of Φ that have been chosen, and the vector left are the columns
remaining.

% PICK VECTOR WITH MOST "ERROR"

pick = findLargeColumn(e);

used = [];

left = 1:q;

W = P(:,pick);

P(:,pick) = []; PP(pick,:) = [];

e(:,pick) = [];

The matrix W is initialized as the best column of Φ. The matrices P and
e has their corresponding column removed, PP has one element removed.
Now update used and left.

used = [used left(pick)];

11.5. ORTHOGONAL LEAST SQUARES 195

left(pick) = [];

% CALCULATE ACTUAL ERROR

w1 = p(:,used)’;

a1 = radbas(dist(w1,p)*b);

[w2,b2] = solvelin2(a1,t);

a2 = w2*a1 + b2*ones(1,q);

sse = sumsqr(t-a2);

3. Exercise: Explain each of the previous lines. What is the difference
between W and w1?

We now begin the MAIN LOOP:

for k = 1:(q-1)

% CHECK ERROR

if (sse < eg), break, end

% CALCULATE "ERRORS" ASSOCIATED WITH VECTORS

wj = W(:,k);

a = wj’ * P / (wj’*wj);

P = P - wj * a;

PP = sum(P.*P)’;

e = ((P’ * d)’ .^ 2) ./ (dd * PP’);

4. Exercise: Explain the previous lines of code. To assist you, you may
want to refer back to Equation 11.8.

% PICK VECTOR WITH MOST "ERROR"

pick = findLargeColumn(e);

W = [W, P(:,pick)];

P(:,pick) = []; PP(pick,:) = [];

e(:,pick) = [];

used = [used left(pick)];

left(pick) = [];

% CALCULATE ACTUAL ERROR

w1 = p(:,used)’;

a1 = radbas(dist(w1,p)*b);

[w2,b2] = solvelin2(a1,t);

a2 = w2*a1 + b2*ones(1,q);

sse = sumsqr(t-a2);

end

[S1,R] = size(w1);

b1 = ones(S1,1)*b;

196 CHAPTER 11. RADIAL BASIS FUNCTIONS

5. Exercise: If you wanted to be able to output the training errors, how
would you modify designrb?

6. Exercise: The following two subfunctions are also included in newrb.m.
Go through and explain each line.

%==

function i = findLargeColumn(m)

replace = find(isnan(m));

m(replace) = zeros(size(replace));

m = sum(m .^ 2,1);

i = find(m == max(m));

i = i(1);

%==

function [w,b] = solvelin2(p,t)

if nargout <= 1

w= t/p;

else

[pr,pc] = size(p);

x = t/[p; ones(1,pc)];

w = x(:,1:pr);

b = x(:,pr+1);

end

To see the actual Matlab code, in the command window, type type newrb

and you will see a printout of the code.

11.6 Homework: Iris Classification

In the following script file, we see the effect of changing the width of the Gaussian
on the performance of the classification procedure. We will use Matlab’s built-in
functions to do the training and testing.

Type in this script file, then use it as a template to investigate how PCA
reduction in the domain effects the classification. In particular:

1. Type in the script file.

2. Make appropriate changes so that once the domain set X is loaded, per-
form a PCA/KL reduction to the best three dimensional space. This will
be the new domain for the RBF.

11.6. HOMEWORK: IRIS CLASSIFICATION 197

3. Run both the original script and the new script, and compare your an-
swers.

%Script file:

numiters=20; %Number of widths of Gaussians

numtrain=120; %Number of training points to use

X=load(’IRIS.NET’);

Y=X(:,5:7); %The targets are the last 3 columns

X(:,5:7)=[]; %The patterns are the first 4 cols

eg=0.1; %Error goal

sp=linspace(0.05,1.6,numiters); %Gaussian Widths

[NumPoints,Dim]=size(X);

temp=randperm(NumPoints);

P=X(temp(1:numtrain),:)’;

T=Y(temp(1:numtrain),:)’;

warning off %We expect some warnings about invertibility

for i=1:numiters

%print the iteration so you can keep track:

i

net=newrb(P,T,eg,sp(i));

z=sim(net,X’);

e(i)=0;

[c(i),b]=size(net.IW{1}); %c is the number of weights used

for k=1:150

[x,j]=max(z(:,k));

if Y(k,j)~=1

e(i)=e(i)+1; %e is the error in classification

end

end

W(i)=max(max(abs(net.LW{2,1}))); %Max weight size

end

%%%

%

% Plotting routines

%%%

subplot(2,2,1)

198 CHAPTER 11. RADIAL BASIS FUNCTIONS

plot3(X(1:50,1),X(1:50,2),X(1:50,3),’r*’)

hold on

plot3(X(51:100,1),X(51:100,2),X(51:100,3),’b^’)

plot3(X(101:150,1),X(101:150,2),X(101:150,3),’go’)

hold off

subplot(2,2,2)

plot(sp,e)

title(’Error versus Gaussian Width’)

subplot(2,2,3)

plot(sp,c)

title(’Number of centers from OLS versus Gaussian Width’);

subplot(2,2,4)

semilogy(sp,W)

title(’Maximum Weight versus Gaussian Width’);

