
Math 350, Exam 2 Review SOLUTIONS

Overview

In this third of the course, we focused on linear learning algorithms to model data. To
summarize:

1. Background: The SVD and the best basis (questions selected from Ch. 6- Can you fill
in the exercises?)

2. How is the rank computed? (theoretically and computationally)

SOLUTION: The theoretical rank (from the SVD) is the number of non-zero singular
values. Numerically, we look at the normalized eigenvalues of the covariance (square
of the singular values):

λ̂i =
λi

λ1 + λ2 + · · ·+ λn

And rank k is determined so that some fixed percent of the overall variance is retained.
For example, if the variance level is 0.90, we choose k so that

k∑
j=1

λ̂j ≥ 0.90 but
k−1∑
j=1

λ̂j < 0.90

3. The SVD and the pseudo-inverse: How is it computed? Where did we use the pseudo-
inverse?

SOLUTION: Given a system of equations, with unknown x, we can find the solution
(or least squares solution if A is not invertible) by using the pseudo-inverse of A. That
is, given the system of equations and the reduced SVD (where the rank is determined
using some level of variance or equivalently, some level of energy),

Ax = b with A = UΣV T

then A† = V Σ−1UT , where Σ is a square diagonal matrix with non-zero values along
the diagonal (so that its inverse is found by taking the reciprocal of each diagonal
element).

Then,

A†Ax = A†b ⇒ V Σ−1UTUΣV Tx = A†b ⇒ V V Tx = A†b

This shows that the (least squares) solution is the projection of x into the column
space of V (which is the row space of A).
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4. Lines of best fit: How did we get the error measures?

Draw a picture: The first line came from measuring error vertically between the actual
y value and the y−value coming from the line. The second line came from measuring
error by orthogonally projecting each point to the line. The third line (median-median)
did not have an error function.

Give a short derivation of two of the algorithms (error in y−coordinate and the median
- median line). (See the notes)

Be able to give the derivation of the second error function (orthogonally projecting the
data to the line). (See your homework)

5. Finding the best linear function:

(a) How do you change an affine equation into a linear equation?

To change the matrix-vector equation:

Ax + b = y

into an equivalent linear equation, Âx̂ = y, the values of b are appended as a
last column to A, and ones are appended as the last row of x (we could have a
matrix-matrix equation AX + b = Y ).

(b) Hebb’s Rule (the biological version) See the notes

(c) Hebb’s Rule (the version with no feedback on p. 6) See the notes.

(d) Will the rule on p. 6 converge? (Exercises on p. 6) No. See the exercises right
after the rule.

(e) The failure leads to Widrow-Hoff (p. 7)

6. Derivatives (Appendix A)

Be sure you can linearize different kinds of functions (like the examples, p. 5-6)

Be able to write a quadratic as xTAx+bTx+c, and take the first and second “deriva-
tives” (e.g., find the gradient and Hessian)- Like exercises 7-8 of the homework.

Be able to explain the method of gradient descent, and explain by approximately how
much we drop (in terms of the function) at each step. You might show it in one
dimension.

7. Back to linear learning algorithms: How is it that Widrow-Hoff is (approximately)
gradient descent? (Be explicit, starting with the error function).

Full gradient descent would require computation of the error function, which in this
case is the Mean Square Error (MSE). With p data points x(i), targets t(i), and network
output y(i) = Wx(i) + b,

Emse =
1

p

p∑
j=1

‖t(j) − y(j)‖2
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Computing this quantity for gradient descent would require all p data points. In online
training, we do not have all data. Therefore, the error is estimated by using the only
the current points t(j) and y(j).

Using the error based only on this point as an estimate of Emse, we look at Widrow-Hoff
(or modified Hebb) as performing a kind of gradient descent.

8. What is translationally invariant data?

SOLUTION: Not covered yet. You may skip this section for the exam.

9. Best subspaces as feature extraction: If we have p data “points” (really vectors) in
IRn, then looking for a small set of “template vectors” (or feature vectors) so that each
point is a linear combination of the features is the same as finding the best basis for
the data set.

Review Questions

1. We had three lines of best fit- Two of them were designed to minimize error functions-
What were the error functions (also show them graphically)?

See the notes above. Can you write the error functions?

E1 =
1

2p

p∑
j=1

(yj − (mxj + b))2

E2 =
1

2p

p∑
j=1

(ax+ by + c)2

a2 + b2

(You could leave the 2 out of the denominator. It is only there to cancel when you
compute the derivatives, but the critical points do not change).

2. Illustrate the median-median line (you may use a calculator) given the data below:

x −1 2 1 0 6 3 5 −2
y 5 −1 1 2 −8 −3 −7 7

SOLUTION: Be able to do this by hand. First re-order the x′s (remember to also
re-order the y’s!). Using the first and last group of three points, find the equation of
the line between (−1, 5) and (5,−7), which is y = −2x + 3. Now check the middle
median: (3/2, 0). In this particular case, the line goes exactly through the median, so
no further shift is needed (otherwise, shift by 1/3 towards the middle point).

3. Recall that if we have a matrix B so that AB = I and BA = I, then matrix B is
called the inverse of matrix A.
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Does the pseudo-inverse of the matrix A, A†, satisfy the same properties? Explain
(using the SVD):

If A = UΣV T is the (reduced) SVD, then A† = V Σ−1UT , and

AA† = UΣV TV Σ−1UT = UUT

A†A = V Σ−1UTUΣV T = V V T

So in the first case, AA† is the projection matrix to the columnspace of U (which
is the column space of A). In the second case, A†A is the projection matrix to the
columnspace of V (which is the row space of A).

If matrix A was invertible, it would be square with full rank, so in that particular case,
UUT = V V T = I.

4. What is Hebb’s rule (the biological version)? (See the notes)

5. In pattern classification, suppose I have data in the plane that I want to divide into 5
classes. Would I want to build a pattern classification function f so that the range is
the following set:

{1, 2, 3, 4, 5}
Why or why not? If not, what might be a better range?

SOLUTION: Using this classification implies that there is a metric with meaning- That
class 1 is closer to class 2 than class 5, for example. Unless that is what you want,
you should try to use class labels without so much ordering. With 5 classes, you might
consider the 5 classes labels:

1
0
0
0
0

 ,


0
1
0
0
0

 ,


0
0
1
0
0

 ,


0
0
0
1
0

 ,


0
0
0
0
1


which are the 5 rows of I5. In class, when we had an even number of classes, we decided
we could use ±1 in each entry, like[

1
1

]
,

[
−1
1

]
,

[
1
−1

]
,

[
−1
−1

]
,

6. Given the function f(x, y), show that the direction in which f decreases the fastest
from a point (a, b) is given by the negative gradient (evaluated at (a, b)).

SOLUTION: Given a function z = f(x, y), at a point (a, b) we measure the rate of
change in the direction of unit vector u as:

Duf = ∇f(a, b) · u = ‖∇f‖ ‖u‖ cos(θ)
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where θ is the (acute) angle between ∇f and u. This simplifies, since we have a unit
vector:

Duf = ∇f(a, b) · u = ‖∇f‖ cos(θ)

The “most negative” this quantity can be is −‖∇f‖, when cos(θ) = 180, or when we
move in the negative direction of the gradient.

7. Illustrate the technique of gradient descent using

f(x, y) = x2 + y2 − 3xy + 2

TYPO: Please make the function f(x, y) = x2 + y2 − xy + 2.

(a) Find the minimum.

Solve for the critical point (the origin). You can show that it is a minimum by
using the second derivatives test or by forming A so that f(x, y) = xTAx (A
should be symmetric). For example,

f(x, y) = xT

[
1 −1/2

−1/2 1

]
x + 2

Then the gradient is
∇f = Ax

and the only time this is zero is at the origin. The Hessian matrix is the matrix
A, whose eigenvalues are 3/2, 1/2 (both positive).

(b) Use the initial point (1, 0) and α = 0.1 to perform two steps of gradient descent
(use your calculator).

SOLUTION: The update algorithm is xi+1 = xi − α∇f(xi).

• First step, with ∇f = [2x− y,−y + 2x]T :

x1 =

[
1
0

]
− 0.1

[
2
−1

]
=

[
0.8
0.1

]

• Second step:

x2 =

[
0.8
0.1

]
− 0.1

[
1.5
−0.6

]
=

[
0.65
0.16

]
(Although the y coordinate is going away from the origin, it will eventually go
back to zero).

8. If

f(t) =

[
3t− 1
t2

]
find the tangent line to f at t = 1.
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SOLUTION: The tangent line will be f(1) + f ′(1)(t− 1), or[
2
1

]
+ (t− 1)

[
3
2

]

NOTE: You could verify this by translating the function into the form y = f(x).

9. If f(x, y) = x2 + y2 − 3xy + 2, find the linearization of f at (1, 0).

SOLUTION:

L(x, y) = f(1, 0) +∇f(1, 0)

[
x− 1
y − 0

]
= 3 + [2 − 3]

[
x− 1
y

]
= 3 + 2(x− 1)− 3y

10. Given just one data point:

X =

[
2
−1

]
T = [1]

Initializing W and b as an appropriately sized arrays of ones, perform three iterations
of Widrow-Hoff using α = 0.1 (by hand, you may use a calculator). You should verify
that the the weights and biases are getting better.

SOLUTION: W = [1 1], b = 1, so y = (2− 1) + 1 = 2. Therefore,

W = W + α(t− y)xT = [1 1] + 0.1(1− 2)[2, −1] = [0.8, 1.1]

and b = 1 + 0.1(1− 2) = 0.9.

Now the new value of y = 1.4, so that

W = [0.8 1.1] + 0.1 · (1− 1.4)[2 − 1] = [0.72 1.14]

b = 0.9 + 0.1 · (1− 1.4) = 0.86

And the new value of y = 1.16. One last update:

W = [0.72 1.14] + 0.1 · (1− 1.16)[2 − 1] = [0.688 1.156]

b = 0.86 + 0.1 · (1− 1.16) = 0.844

And the new value of y will be 1.06, so we are coming close to the desired value.

11. If a time series is given by:

x = {1, 2, 0, 3, 4, 5, 2, 1, 0, 3, 4}

Give the result of performing lag 2:

SOLUTION:  1 2 0 3 4 5 2 1 0
2 0 3 4 5 2 1 0 3
0 3 4 5 2 1 0 3 4


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12. If the time series is periodic with period k, what happens when we perform a lag k−1?

x = {x1, x2, . . . , xk, x1, x2, . . . , xk, . . .}

SOLUTION: It is fixed (never changes).

13. Be sure you can provide justifications for statements 3-5, p. 96 of Chapter 6 (best
basis)- You actually did this for a specific 2-dimensional case in Exam 1.

3. Writing vector φ in terms of the basis given by the v’s, and if we let the vector a
be the vector of coordinates, we have

φ = V a

Now, since the columns of V are orthonormal,

φTφ = aTV TV a = aT Ia = aTa

(Side note: This is a statement of the Pythagorean Theorem, as we discussed in
class).

4. Recall that the vectors V are the eigenvectors of C (that is, C = V ΛV T ), and
substituting, we have:

φTCφ

φTφ
=

aTV TCV a

aTa
=

aTV T (V ΛV T )V a

aTa
=

aT Λa

aTa

Which is the expression shown in the text.

5. The eigenvalue λ1 is the largest eigenvalue. Therefore,

λ1a
2
1 + · · ·λna

2
n

a2
1 + a2

2 + · · ·+ a2
n

Let bi =
a2

i

a2
1+a2

2+···+a2
n
. Then 0 ≤ bi ≤ 1, and we can write the expression as:

λ1a
2
1 + · · ·λna

2
n

a2
1 + a2

2 + · · ·+ a2
n

= λ1b1 + · · ·λnbn ≤ λ1(b1 + b2 + · · · bn) = λ1

14. If I know the vector v1 and the singular value σ1 from the SVD of a matrix A, can I
compute u1 directly? Was σ1 really needed?

SOLUTION: Since A = UΣV T , then AV = UΣ, or columnwise for U ,

Av1 = σ1u1 or
1

σ1

Av1 = u1

We did not need σ1. We could take Av1, then normalize it.
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