
Linear Models

In this section, we review some basics of modeling via linear algebra: finding a line of best fit,
Hebbian learning, pattern classification.

Best Fitting Line

In this section, we examine the simplest case of fitting data to a function. We are given n
ordered pairs of data:

X = {x1, x2, . . . , xn} Y = {y1, y2, . . . , yn}

We wish to find the best linear relationship between X and Y . But what is “best”? It
depends on how you look at the data, as described in the next three exercises.

1. Exercise: Let y be a function of x. Then we are trying to find b0 and b1 so that

y = b0x + b1

best describes the data. If the data were perfectly linear, then this would mean that:

y1 = b0x1 + b1

y2 = b0x2 + b1

...
yn = b0xn + b1

⇒ y =

1
x 1

...
1

[

b0

b1

]

⇒ Ab = y

However, most of the time the data is not actually, exactly linear, so that the values of
y don’t match the line: b0x + b1. There are many ways of expressing the error- Below,
we look at three ways.

The first way is to define the error as the following:

E1 =
n
∑

k=1

|yk − (b0xk + b1)|

(a) Show graphically what this error would represent for one of the data points.

(b) E1 is a function of two variables, b0 and b1. What is the difficulty in determining
the minimum1 error using this error function?

The usual method of defining the error is to sum the squared errors up:

Ese =
n
∑

k=1

(yk − (b0xk + b1))
2

Why is it appropriate to use this error instead of the other error?

1We could solve this problem by using Linear Programming, but that is outside the scope of these notes-
but maybe later!

1

(c) Ese is a function of b0 and b1, so the minimum value occurs where

∂Ese

∂b0

= 0
∂Ese

∂b1

= 0

This leads to the system of equations: (the summation index is 1 to n)

b0

∑

x2

k + b1

∑

xk =
∑

xkyk

b0

∑

xk + b1n =
∑

yk

(d) Show that this is the same set of equations you get by solving the normal equations,
AT Ab = ATy, assuming A is full rank.

(e) Exercise: Write a Matlab routine that will take a 2×n matrix of data, and output
the values of b0 = m and b1 = b found above. The first line of code should be:

function [m,b]=Line1(X)

and save as Line1.m.

The last case is where we treat x and y independently, so that we don’t assume that one
is a function of the other.

(f) Show that, if ax + by + c = 0 is the equation of the line, then the distance from
(x1, y1) to the line is

|ax1 + by1 + c|√
a2 + b2

which is the size of the orthogonal projection of the point to the line. This is
actually problem 53, section 11.3 of Stewart’s Calculus text, if you’d like more
information.

(HINT: The vector [a, b]T is orthogonal to the line ax+by+c = 0. Take an arbitrary
point P on the line, and project an appropriate vector to [a, b]T .)

Conclude that the error function is:

E =
n
∑

k=1

(axk + byk + c)2

a2 + b2

(g) Draw a picture of the error in this case, and compare it graphically to the error in
the previous 2 exercises.

(h) The optimimum value of E occurs where ∂E
∂c

= 0. Show that if we mean subtract
X and Y , then we can take c = 0. This leaves only two variables.

(i) Now our error function is:

E =
n
∑

k=1

(axk + byk)
2

a2 + b2

Show that we can transform this function (with appropriate assumptions) to:

E =
n
∑

k=1

(xk + µyk)
2

1 + µ2

(for some µ), and conclude that E is a function of one variable.

2

(j) Now the minimum occurs where dE
dµ

= 0. Compute this quantity to get:

µ2A + µB + C = 0

where A, B, C are expressions in
∑

xkyk,
∑

x2

k,
∑

y2

k. This is a quadratic expression
in µ, which we can solve. Why are there (possibly) 2 real solutions?

(k) Write a Matlab routine [a,b,c]=Line2(X) that will input a 2 × n matrix, and
output the right values of a, b, and c.

2. Matlab Exercise: Try the 2 different approaches on the following data set, which
represents heights (in inches) and weight (in lbs.) of 10 teenage boys. (Available in
HgtWgt.mat)

X 69 65 71 73 68 63 70 67 69 70
Y 138 127 178 185 141 122 158 135 145 162

Plot the data with the 3 lines. What do the 3 approaches predict for the weight of
someone that is 72 inches tall?

3. Exercise: Do the same as the last exercise, but now add the data point (62, 250).
Compare the new lines with the old. Did things change much?

The Median-Median Line:

The median of data is sometimes preferable to the mean, especially if there exists a few data
points that are far different than “most” data.

1. Definition: The median of a data set is the value so that exactly half of the data is
above that point, and half is below. If you have an odd number of points, the median is
the “middle” point. If you have an even number, the median is the average of the two
“middle” points. Matlab uses the median command.

2. Exercise: Compute (by hand, then check with Matlab) the medians of the following
data: {1, 3, 5, 7, 9, 11}
The motivation for the median-median line is to have a procedure for line fitting that is
not as sensitive to “outliers” as the 3 methods in the previous section.

Median-Median Line Algorithm

• Separate the data into 3 equal groups (or as equal as possible). Use the x−axis to
sort the data.

• Compute the median of each group (first, middle, last).

• Compute the equation of the line through the first and last median points.

• Find the vertical distance between the middle median point and the line.

• Slide the line 1/3 of the distance to the middle median point.

3

3. Exercise: The hardest part of the Matlab code will be to partition the data into three
parts. Here are some hints:

• If we divide a number by three, we have three possible remainders: 0, 1, 2. What
is the most natural way of seperating data in these three cases (i.e., if we had 27,
28 or 29 data points)?

• Look at the Matlab command rem. Notice that:

rem(27,3)=0 rem(28,3)=1 rem(29,3)=2

• The command to sort: [s,index]=sort(x). For example,

>> a=[3 2 4 1];

>> [a2,idx]=sort(a)

a2 =

1 2 3 4

idx =

4 2 1 3

Notice that a2(j) = a(idx(j)). We can therefore sort x first, then sort y according
to the index for x.

4. Exercise: Try this algorithm on the last data set, then add the new data point. Did
your lines change as much?

5. Exercise: Consider the following data set [1] which relates the index of exposure to
radioactive contamination from Hanford to the number of cancer deaths per 100, 000
residents. We would like to get a relationship between these data. Use the four tech-
niques above, and compare your answers. Compute the actual errors for the first three
types of fits and compare the numbers.

County/City Index Deaths

Umatilla 2.5 147
Morrow 2.6 130
Gilliam 3.4 130
Sherman 1.3 114
Wasco 1.6 138
Hood River 3.8 162
Portland 11.6 208
Columbia 6.4 178
Clatsop 8.3 210

Hebbian Learning

D.O. Hebb (1904-1985) was a physiological psychologist at McGill University. We will dis-
cuss his influence on machine learning, but he also did some very interesting experiments to
determine how the brain functions. Among the research2:

2As usual, these footnote sketches are somewhat oversimplified. Read about Hebb’s work from his writings,
especially “The Organization of Behavior” (1949), and his autobiography in 1980 “A History of Psychology
through Autobiography”, vol VII

4

• Evidence for the plasticity of the brain:

Much to Hebb’s amazement, he found that even after substantial loss of tissue
from the frontal lobes of the brain, there was no loss in intelligence, and in
some cases, he even detected a gain in intelligence3.

• Sensory Deprivation experiments: Sensory input is vital for brain functioning. Over
time without sensory stimulation, subjects hallucinate and their personalities begin to
break down.

In Hebb’s view, learning could be described physiologically. That is, there is a physical
change in the nervous system to accommodate learning, and that change is summarized by
what we now call Hebb’s postulate (from his 1949 book):

When an axon of cell A is near enough to excite a cell B and repeatedly takes part
in firing it, some growth process or metabolic change takes place in one or both
cells such that A’s efficiency, as one of the cells firing B, is increased.

As with many named theorems and postulates, this was not an idea that was completely new,
but he does give the postulate in a form that can be used as a basis for machine learning.

Next, we look at a mathematical model of Hebb’s postulate.

Linear Neurons and Hebbian Learning

Let us first build a simple model for a neuron. A neuron has three basic parts- The dendrites,
which carry information to the cell body, the cell body, and the axon, which carries information
away from the cell body.

Multiple signals come in to the cell body from the dendrites. Mathematically, we will
assume they all arrive at the same time, and the action of the dendrites (or the arrival site
of the cell body) is that each signal is changed by the physiology of the cell. That is, if xi is
“information” along dendrite i, arrival at the cell body changes it to wixi, where wi is some
real scalar. For example, wi > 1 is an amplification of the signal, 0 < wi < 1 is an inhibition
of the signal, and negative values mean re-polarization.

Next, the cell body collates this information by summing these signals together. This
action is easily represented by the inner product of the vector of w’s (the weights) to the
signal x. For the purposes of this section, we will assume no further processing. Thus, for one
neuron with n incoming signals, the input-output relationship is:

x 7→ w · x

If the signal is passed to a cell assembly, or group of neurons, then each neuron has its
own set of weights, and the mapping becomes:

x → Wx = y

If we have k neurons and x is a vector in IRn, then W is a k × n matrix, and each row
corresponds to a signal neuron’s weights (that is, Wij refers to the weight taking xj to neuron
i).

3An Introduction to the Theories of Learning, p. 394

5

Next, we model Hebb’s postulate. We suppose that we present the network with a pattern,
x ∈ IRn, and it outputs a pattern, y ∈ IRk. In terms of each weight, we see that

Wij connects the jth value of the input to the ith value of the output.

Thus we might take the following as Hebb’s Rule. The change in the weight connecting
the jth input to the ith cell is given by:

∆Wij = αyixj

where α is called the learning rate. If both xj and yi match in sign, then Wij becomes
larger. If there is a mismatch in sign, Wij gets smaller. This is the unsupervised Hebbian rule.
We now should formulate this using matrix algebra.

As before, assume we have n inputs to the network, and m outputs. Then W is m × n,
with x ∈ IRn and y ∈ IRm. If we compute the outer product, yxT , we get:

y1

y2

...
ym

[x1, x2, . . . , xn] =

y1x1 y1x2 . . . y1xn

y2x1 y2x2 . . . y2xn

...
...

ymx1 ymx2 . . . ymxn

You should verify that in this case, we can compactly write Hebb’s rule as:

Wnew = W + αyxT

and that this change is valid for a single x,y stimulus-response pair. If we define W0 to be
the initial weight matrix (we could initialize it randomly, for example), then the update rule
becomes:

W1 = W0 + αyxT = W0 + αW0xxT = W0

(

In×n + αxxT
)

EXERCISES:

1. Write Wn in terms of W0 using the previous formula as a starting point.

2. Show that, if λi, vi is the eigenvalue and eigenvector of a matrix A, then (1 + βλi) and
vi is an eigenvalue and eigenvector of (I + βA).

3. Let the matrix A = xxT , where x ∈ IRn, and x 6= 0. If v ∈ IRn, show that Av is a scalar
multiple of x. (This shows that the dimension of the columnspace of xxT is 1)

4. Same matrix A as in the previous exercise. Show that one eigenvalue is ‖x‖2 (Hint: The
eigenvector is x).

5. We’ll state the following without proof for now: If A is n × n and symmetric, and the
columnspace of A has dimension 1, then there is exactly one nonzero eigenvalue. Use
this, together with the previous exercises to compute the eigenvalues of I + αxxT .

6. There is a theorem that says that if the eigenvalues satisfy |λi| ≤ 1, then the elements
of An will converge (otherwise, the elements of An will diverge).

Given our previous computation, will Hebb’s rule give convergence?

6

Hebb’s Rule with Feedback

Somehow, we want to take feedback into account so that we can use Hebb’s rule in supervised
learning problems.

Let t be the target (or desired) value for the input x. That is, we would be given pairs of
vectors,

(xi, ti)

and we want to build an affine function using matrix W and vector b so that

Wxi + b = ti

In the supervised Hebbian rule, we need to update the weights based on what we want the
network to do, rather than what the network is already doing:

∆Wij = αtjxi

There is still something unsatisfying here- When should we stop the training? It seems like
the weights could diverge as training progresses, and furthermore, we’re not taking the actual
outputs of the network into account. Heuristically, we would like for the update to go to zero
as the target values approach the network outputs. This leads us to our final modification of
our basic Hebb rule, and is called the Widrow-Hoff learning rule4:

∆Wij = α(tj − yj)xi

If we put this in matrix form, the learning rule becomes:

W new = W old + α (t − y)xT

where (x, t) is a desired input-output relation, and y = Wx.
Additionally, sometimes it is appropriate to add a bias term so that the network has the

output:
y = Wx + b

The bias update is similar to the previous update:

bnew = bold + α (t − y)

Example: Associative Memory

Here we will reproduce an experiment by Widrow and Hoff5 who built an actual machine to
do this (we’ll do a computer simulation).

We’ll have three letters as input, T , G and F . We’ll associate these letters to the numbers
−60, 0, 60 respectively. We want our network to perform the association using the Widrow-
Hoff learning rule.

The letters will be defined by 4 × 4 arrays of numbers, where 1 corresponds to the color
black, and −1 corresponds to the color white. In this example, we’ll have two samples of each
letter, as shown in Figure 1.

Implementation:

4Also goes by the names Least Mean Squares rule, and the delta rule.
5See “Adaptive Switching Circuits” by B. Widrow and M.E. Hoff, in 1960 IRE WESCON Convention

Record, New York: IRE, Part 4, p. 96-104. You might find reprints also on the internet.

7

1 2 3 4

0.5

1

1.5

2

2.5

3

3.5

4

4.5
1 2 3 4

0.5

1

1.5

2

2.5

3

3.5

4

4.5
1 2 3 4

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 2 3 4

0.5

1

1.5

2

2.5

3

3.5

4

4.5
1 2 3 4

0.5

1

1.5

2

2.5

3

3.5

4

4.5
1 2 3 4

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Figure 1: The inputs to our linear associative memory model: Three letters, T, G, H , where
we have two samples of each letter, and each letter is defined by a 4×4 grid of numbers. We’ll
be associating T with −60, G with 0, and H with 60.

• First, we process the input data. Rather than working with 4× 4 grids, we concatenate
the columns to work with vectors in IR16. Thus, we have 6 domain data points in IR16,
two samples of each letter. Construct range points so that they correspond with the
letters.

• We’ll use an α = 0.03.

• We’ll take several passes through all the data points.

• To measure the error, after each pass through the data, we’ll put each letter through
the function to get an output value. We’ll take the square of the difference between that
and the desired value. We’ll take the sum of the errors squared for those six samples to
be the measure of the error for that pass.

Here is the code we used for this example. Again, be sure to read and understand what the
code is doing. A lot of the initial part of the code is just there to get the data read in and
plotted.

T1=[1 1 1 -1

-1 1 -1 -1

-1 1 -1 -1

-1 1 -1 -1];

T2=[-1 1 1 1

-1 -1 1 -1

-1 -1 1 -1

-1 -1 1 -1];

G1=[1 1 1 -1

1 -1 -1 -1

1 1 1 -1

8

1 1 1 -1];

G2=[-1 1 1 1

-1 1 -1 -1

-1 1 1 1

-1 1 1 1];

F1=[1 1 1 -1

1 1 -1 -1

1 -1 -1 -1

1 -1 -1 -1];

F2=[-1 1 1 1

-1 1 1 -1

-1 1 -1 -1

-1 1 -1 -1];

gg=colormap(gray);

gg=gg(end:-1:1,:);

subplot(2,3,1)

imagesc(T1)

colormap(gg)

subplot(2,3,2)

imagesc(G1)

subplot(2,3,3)

imagesc(F1)

subplot(2,3,4)

imagesc(T2)

subplot(2,3,5)

imagesc(G2)

subplot(2,3,6)

imagesc(F2)

%**************************************

%The main code starts here!

%**************************************

X=[T1(:) T2(:) G1(:) G2(:) F1(:) F2(:)];

T=[60 60 0 0 -60 -60];

alpha=0.03;

W=randn(1,16);

b=0;

TotalErr=0;

NumPoints=6;

for k=1:60

idx=randperm(6);

9

0 10 20 30 40 50 60
0

20

40

60

80

100

120

Figure 2: The errors for the Widrow-Hoff rule applied to letter recognition (or associative
memory. After 60 passes through the data, the associations are very good.

for j=1:NumPoints

ThisOut=W*X(:,idx(j))+b;

ThisErr=T(idx(j))-ThisOut;

%Update the weights and biases

W=W+alpha*ThisErr*X(:,idx(j))’;

b=b+alpha*ThisErr;

end

EpochErr(k)=norm((W*X+b*ones(1,6))-T);

end

figure(2)

plot(EpochErr);

The plot of the error is shown in Figure 2. The horizontal axis counts the number of passes
through the data, and the vertical axis gives the sum of the squared errors. Note that after
60 passes, we get very good classification of the letters!

You should put this code into Matlab and reproduce the figures.

10

Class 1

Class 2

Class 3

Class 4

Figure 3: Pattern Classification Problem. Each point is a sample of one of the four classes.

Pattern Classification

Let’s put all of this together to solve a pattern classification problem. Suppose we are given
the following associations:

Point Class
(1, 1) 1
(1, 2) 1
(2,−1) 2
(2, 0) 2
(−1, 2) 3
(−2, 1) 3
(−1,−1) 4
(−2,−2) 4

Graphically, we can see the classes in the plane in Figure 3. There are several ways of
performing the desired mapping- for example, the outputs could be 1, 2, 3, 4. But this may
have unintended consequences. In this case, the metric between outputs would imply that
Class 4 is much farther away from Class 1 than Class 3. A better method may be to take
Class 1 to be the vector [−1,−1]T , Class 2 is the vector [−1, 1]T , Class 3 is [1,−1]T , and Class
4 is [1, 1]T . Now the 4 classes are on the vertices of a square.

Now for the details of the program. First write the inputs as an 2 × 8 matrix, with a
corresponding output matrix that is also 2 × 8. Parameters that can be placed first will be
the maximum number of times through the data N and the learning rate, a, which we will set
to 0.04. We can also set an error bound so that we might stop early. Set the initial weights
to the 2 × 2 identity, and the bias vector b to [1, 1]T .

Check your algorithm using the following data: After using the first data point, W and b
should have the values:

W =

[

0.88 −0.12
−0.12 0.88

]

, b =

[

0.88
0.88

]

11

Let the program run until you think it has converged (this is your choice). Then, plot the
points x = [x, y]T so that Wx + b = 0, which will be the two lines:

W11x + W12y + b1 = 0, W21x + W22y + b2 = 0

These lines form what is called the decision boundary.

Linear Networks, continued

Theorem: A multilayer linear neural network is equivalent to a single layer linear neural
network.

Proof: Suppose that the network has “n” nodes in the input layer, and has N1, N2, . . . , Nk

nodes in the k hidden layers, with m nodes in the output layer. Then the mapping from the
input layer to the first layer is an affine mapping from IRn to IRN1:

x 7→ A1x + b1

where A is N1 × n. Going to the next layer is realized as an affine mapping from IRN1 to IRN2

A2(A1x + b1) + b2

.
= Â1x + b̂1

Continuing to the end, we get one affine mapping from IRn to IRm:

Âx + b̂

where Â is m × n, and b̂ is m × 1.

We have algorithms for solving systems of the form Ax = y- Can we use these to solve the
affine problem

Ax + b = y

Consider the following example

(

a1 a2

a3 a4

)(

x1

x2

)

+

(

b1

b2

)

=

(

y1

y2

)

This is equivalent to the linear problem:

(

a1 a2 b1

a3 a4 b2

)

x1

x2

1

 =

(

y1

y2

)

If we only want a two dimensional output, we can leave off the last row (the last row is there
to do “perspective projections”).

Exercise: Show that the system of affine equations: AX + B = Y is also equivalent to a
linear problem: ÂX̂ = Y

12

