
Linear Algebra Fundamentals

It can be argued that all of linear algebra can be understood using the four
fundamental subspaces associated with a matrix. Because they form the foun-
dation on which we later work, we want an explicit method for analyzing these
subspaces- That method will be the Singular Value Decomposition (SVD). It is
unfortunate that most first courses in linear algebra do not cover this material,
so we do it here. Again, we cannot stress the importance of this decomposition
enough- We will apply this technique throughout the rest of this text.

1 Representation, Basis and Dimension

Let us quickly review some notation and basic ideas from linear algebra:
Suppose that the matrix V is composed of the columns v1, . . . ,vk, and that

these columns form a basis basis for some subspace, H, in IRn.
Side Remark: Notice that this implies k ≤ n so that the matrix V must be

a “tall” matrix- Why?
By the definition of a basis, every vector in the subspace H can be written

as a linear combination of the basis. In particular, if x ∈ H, then we can write:

x = c1v1 + . . . + ckvk
.
= V c

where c is sometimes denoted as [x]V , and is referred to as the coordinates of
x with respect to the basis in V .

Therefore, every vector in our subset of IRn can be identified with a point in
IRk, which gives us a function:

x =











x1

x2

...
xn











←→







c1

...
ck






= c

Since k < n, we think of c is the low dimensional representation of the
vector x.

Furthermore, we would say that the subspace H (a subspace of IRn) is iso-
morphic to IRk. We’ll recall the definition:

Definition 1.1. Any one-to-one (and onto) linear map is called an isomor-
phism. In particular, any change of coordinates is an isomorphism. Spaces that
are isomorphic have essentially the same algebraic structure- adding vectors
in one space is corresponds to adding vectors in the second space, and scalar
multiplication in one space is the same as scalar multiplication in the second.

Example 1.1. If vi,vj are two linearly independent vectors, then the subspace
created by their span is isomorphic to the xy plane - but is not equal to the
plane.
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Definition 1.2. Let H be a subspace of vector space X. Then H has dimension
k if a basis for H requires k vectors.

Generally speaking, to find the coordinates of x with respect to some arbi-
trary basis (as columns of a matrix V ), we have to solve the following system:

x = V c

Again, in the most general case, this would require row reduction or if the matrix
was square, matrix inversion. However, a special case is when the columns of V
are orthonormal.

Before continuing, let’s look at an example:

Example 1.2. Let the subspace H be formed by the span of the vectors v1,v2

given below. Given the point x1,x2 below, find which one belongs to H, and if
it does, give its coordinates.

v1 =





1
2
−1



 v2 =





2
−1

1



 x1 =





7
4
0



 x2 =





4
3
−1





SOLUTION: Rather than row-reduce twice, we’ll do it once on the augmented
matrix below.





1 2 7 4
2 −1 4 3
−1 1 0 −1



→





1 0 3 2
0 1 2 1
0 0 1 0





How should this be interpreted? The second vector, x2 is in H, as it can be
expressed as 2v1 + v2. Its low dimensional representation is thus [2, 1]T .

The first vector, x1, cannot be expressed as a linear combination of v1 and
v2, so it does not belong to H.

If the basis is orthonormal, we do not need to perform any row reduction.
Let us recall a few more definitions:

Definition 1.3. A real n× n matrix Q is said to be orthogonal if

QT Q = I

Be careful with the definition- The way the definition is worded, all orthog-
onal matrices are square. We will often work with non-square matrices with
orthonormal columns.

Example 1.3. Let U be a non-square matrix with orthonormal columns (so it
is tall - why?). Then we show using a small example that UT U is the identity
matrix, but UUT is not: Let U = [u1] = [1, 0]T . Then UT U = 1 (the one by
one identity), but the other way around, we do not get the identity:

UUT =

[

1 0
0 0

]
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Having an orthonormal basis nice makes it easy to compute the coordinates.
For example, if the column vectors uk are orthonormal and the matrix U is
formed from them, we can write a vector x in the columnspace of U as:

x = Uc ⇒ UT
x = UT Uc = c

We see that the coordinates of x with respect to the basis in the columns of U
are simply: UT

x. NOTE: No matrix inversion, no row reduction necessary!

Coordinates as Projections

The matrix equation we looked at earlier can be written as:

x = c1u1 + c2u2 + · · ·+ ckuk

And taking the dot product of each side with uj , we get:

u
T
j x = 0 + 0 + · · ·+ cju

T
j uj + 0 + · · ·+ 0

Therefore, each coordinate can be expressed as:

cj =
u

T
j x

u
T
j uj

Which we interpret in terms of projections below.
Recall that the orthogonal projection of x onto a vector u is the following:

Proju(x) =
uj · x
u · u u

In fact, we might also recall the scalar projection of x onto a vector u is the
following:

uj · x
‖u‖

In particular, if ‖u‖ = 1, then the scalar projection of x onto u is the coordinate,
and things simplify.

Additionally, the projection of x onto the subspace spanned by the (or-
thonormal) columns of a matrix U is found by projecting x onto each column
of U and summing:

ProjU (x) = Proju1
(x) + · · ·+ Projuk

(x)

or, in matrix form:
ProjU (x) = Uc = UUT

x (1)

Example 1.4. Let u1 and u2 be given. Find the coordinates of x1 with respect
to this basis.

u1 =
1√
5





1
2
0



 u2 =
1√
6





2
−1

1



 x1 =





−1
0
2




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SOLUTION:

c = UT
x ⇒ c =

[

1/
√

5 2/
√

5 0

2/
√

6 −1/
√

6 1/
√

6

]





−1
8
−2



 =

[

3
√

5

−2
√

6

]

The reader should verify that this is accurate.

We summarize our discussion with the following theorem:

Change of Basis Theorem. Suppose H is a subspace of IRn with orthonormal
basis vectors given by the k columns of a matrix U (so U is n× k). Then, given
x ∈ H,

• The low dimensional representation of x with respect to U is the
vector of coordinates, c ∈ IRk:

c = UT
x

• The reconstruction of x as a vector in IRn is:

x̂ = UUT
x

where, if the subspace formed by U contains x, then x = x̂- Notice in this
case, the projection of x into the columnspace of U is the same as x.

This last point may seem trivial since we started by saying that x ∈ U , however,
soon we’ll be loosening that requirement.

Example 1.5. Let x = [3, 2, 3]T and let the basis vectors be u1 = 1√
2
[1, 0, 1]T

and let u2 = [0, 1, 0]T . Compute the low dimensional representation of x, and
its reconstruction (to verify that x is in the right subspace).

SOLUTION: The low dimensional representation is given by:

c = UT
x =

[

1/
√

2 0 1/
√

2
0 1 0

]





3
2
3



 =

[

3
√

2
2

]

And the reconstruction (verify the arithmetic) is:

x̂ = UUT x =





1/2 0 1/2
0 1 0

1/2 0 1/2









3
2
3



 =





3
2
3





For future reference, you might notice that UUT is not the identity, but
UT U is the 2× 2 identity:

UT U =

[

1/
√

2 0 1/
√

2
0 1 0

]





1/
√

2 0
0 1

1/
√

2 0



 =

[

1 0
0 1

]

Projections are important part of our work in modeling data- so much so
that we’ll spend a bit of time formalizing the ideas in the next section.
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Figure 1: Projections P1 and P2 in the first and second graphs (respectively).
Asterisks denote the original data point, and circles represent their destination,
the projection of the asterisk onto the vector [1, 1]T . The line segment follows
the direction Px− x. Note that P1 does not project in an orthogonal fashion,
while the second matrix P2 does.

2 Special Mappings: The Projectors

In the previous section, we looked at projecting one vector onto a subspace by
using Equation 1. In this section, we think about the projection as a function
whose domain and range will be subspaces of IRn.

The defining equation for such a function comes from the idea that if one
projects a vector, then projecting it again will leave it unchanged.

Definition 2.1. A Projector is a square matrix P so that:

P2 = P

In particular, Px is the projection of x.

Example 2.1. The following are two projectors. Their matrix representations
are given by:

P1 =

[

1 0
1 0

]

P2 =
1

2

[

1 1
1 1

]

Some samples of the projections are given in Figure 1, where we see that both
project to the subspace spanned by [1, 1]T .

Let’s consider the action of these matrices on an arbitrary point:

P1x =

[

1 0
1 0

] [

x
y

]

=

[

x
x

]

, P1(P1x) =

[

1 0
1 0

] [

x
x

]

=

[

x
x

]

P2x =
1

2

[

1 1
1 1

] [

x
y

]

=

[

x+y

2
x+y

2

]

=
x + y

2

[

1
1

]

You should verify that P 2
2 x = P2(P2(x)) = x.

You can deduce along which direction a point is projected by drawing a
straight line from the point x to the point Px. In general, this direction will
depend on the point. We denote this direction by the vector Px− x.

From the previous examples, we see that Px− x is given by:

P1x− x =

[

0
x− y

]

, and P2x− x =

[ −x+y

2
x−y

2

]

=
x− y

2

[

−1
1

]

You’ll notice that in the case of P2, P2x − x = (P2 − I)x is orthogonal to
P2x.
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Definition 2.2. P is said to be an orthogonal projector if it is a projector, and
the range of P is orthogonal to the range of (I −P). We can show orthogonality
by taking an arbitrary point in the range, Px and an arbitrary point in (I −P),
(I − P)y, and show the dot product is 0.

There is a property of real projectors that make them nice to work with:
They are also symmetric matrices:

Theorem 2.1. The (real) projector P is an orthogonal projector iff P = PT .
For a proof, see for example, [?].

Caution: An orthogonal projector need not be an orthogonal matrix. No-
tice that the projector P2 from Figure 1 was not an orthogonal matrix (that is,
P2P

T
2 6= I).
We have two primary sources for projectors:

Projecting to a vector: Let a be an arbitrary, real, non-zero vector. We
show that

Pa =
aa

T

‖a‖2
is a rank one orthogonal projector onto the span of a:

• The matrix aa
T has rank one, since every column is a multiple of a.

• The given matrix is a projector:

P2 =
aa

T

‖a‖2 ·
aa

T

‖a‖2 =
1

‖a‖4 a(aT
a)aT =

aa
T

‖a‖2 = P

• The matrix is an orthogonal projector, since PT = P.

Projecting to a Subspace: Let Q = [q1, q2, . . . , qk] be a matrix with or-
thonormal columns. Then

P = QQT

is an orthogonal projector to the column space of Q. This generalizes the result
of the previous exercise. Note that if Q was additionally a square matrix,
QQT = I.

Note that this is exactly the property that we discussed in the last example
of the previous section.

Exercises

1. Show that the plane H defined by:

H =







α1





1
1
1



 + α2





1
−1

0



 such that α1, α2 ∈ IR







is isormorphic to IR2.
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2. Let the subspace G be the plane defined below, and consider the vector
x, where:

G =







α1





1
3
−2



 + α2





3
−1

0



 such that α1, α2 ∈ IR







x =





1
0
2





(a) Find the projector P that takes an arbitrary vector and projects it
(orthogonally) to the plane G.

(b) Find the orthogonal projection of the given x onto the plane G.

(c) Find the distance from the plane G to the vector x.

3. If the low dimensional representation of a vector x is [9,−1]T and the
basis vectors are [1, 0, 1]T and [3, 1, 1]T , then what was the original vector
x? (HINT: it is easy to compute it directly)

4. If the vector x = [10, 4, 2]T and the basis vectors are [1, 0, 1]T and [3, 1, 1]T ,
then what is the low dimensional representation for x?

5. Let a = [−1, 3]T . Find a square matrix P so that Px is the orthogonal
projection of x onto the span of a.

3 The Four Fundamental Subspaces

Given any m× n matrix A, we consider the mapping A : IRn → IRm by:

x→ Ax = y

The four subspaces allow us to completely understand the domain and range of
the mapping. We will first define them, then look at some examples.

Definition 3.1. The Four Fundamental Subspaces

• The row space of A is a subspace of IRn formed by taking all possible
linear combinations of the rows of A. Formally,

Row(A) =
{

x ∈ IRn |x = AT
y y ∈ IRm

}

• The null space of A is a subspace of IRn formed by

Null(A) = {x ∈ IRn |Ax = 0}

• The column space of A is a subspace of IRm formed by taking all possible
linear combinations of the columns of A.

Col(A) = {y ∈ IRm | y = Ax ∈ IRn}
The column space is also the image of the mapping. Notice that Ax is
simply a linear combination of the columns of A:

Ax = x1a1 + x2a2 + · · ·+ xnan
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• Finally, we define the null space of AT can be defined in the obvious way
(see the Exercises).

The fundamental subspaces subdivide the domain and range of the mapping
in a particularly nice way:

Theorem 3.1. Let A be an m× n matrix. Then

• The nullspace of A is orthogonal to the row space of A

• The nullspace of AT is orthogonal to the columnspace of A

Proof: See the Exercises.
Before going further, let us recall how to construct a basis for the column

space, row space and nullspace of a matrix A. We’ll do it with a particular
matrix:

Example 3.1. Construct a basis for the column space, row space and nullspace
of the matrix A below:

A =





2 0 −2 2
−2 5 7 3

3 −5 −8 −2





SOLUTION: The row reduced form of A is:




1 0 −1 1
0 1 1 1
0 0 0 0





The first two columns of the original matrix form a basis for the columnspace
(which is a subspace of IR3):

Col(A) = span











2
−2

3



 ,





2
−2

3











A basis for the row space is found by using the row reduced rows corresponding
to the pivots (and is a subspace of IR4). You should also verify that you can find
a basis for the null space of A, given below (also a subspace of IR4). If you’re
having any difficulties here, be sure to look it up in a linear algebra text:

Row(A) = span























1
0
−1

1









,









0
1
1
1























Null(A) = span























1
−1

1
0









,









−1
−1

0
1























We will often refer to the dimensions of the four subspaces. We recall that
there is a term for the dimension of the column space- That is, the rank.
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Definition 3.2. The rank of a matrix A is the number of independent columns
of A.

In our previous example, the rank of A is 2. Also from our example, we see
that the rank is the dimension of the column space, and that this is the same
as the dimension of the row space (all three numbers correspond to the number
of pivots in the row reduced form of A). Finally, a handy theorem for counting
is the following.

The Rank Theorem. Let the m× n matrix A have rank r. Then

r + dim (Null(A)) = n

This theorem says that the number of pivot columns plus the other columns
(which correspond to free variables) is equal to the total number of columns.

Example 3.2. The Dimensions of the Subspaces.
Given a matrix A that is m×n with rank k, then the dimensions of the four

subspaces are shown below.

• dim (Row(A)) = k

• dim (Null(A)) = n− k

• dim (Col(A)) = k

• dim
(

Null(AT )
)

= m− k

There are some interesting implications of these theorems to matrices of
data- For example, suppose A is m× n. With no other information, we do not
know whether we should consider this matrix as n points in IRm, or m points in
IRn. In one sense, it doesn’t matter! The theorems we’ve discussed shows that
the dimension of the columnspace is equal to the dimension of the rowspace.
Later on, we’ll find out that if we can find a basis for the columnspace, it is easy
to find a basis for the rowspace. We’ll need some more machinery first.

4 Exercises

The Best Approximation Theorem If W is a subspace of IRn and x ∈ IRn,
then the point closest to x in W is the orthogonal projection of x into W . We
prove this in the exercises below.

1. Show that N (A) ⊥ R(AT ). You must show that, for arbitrary x1 ∈ N (A)
and x2 ∈ R(AT ), we have (x1,x2) = 0. Hint: Write A in terms of its
rows.

2. If A is m× n, how big can the rank of A possibly be?

3. Show that multiplication by an orthogonal matrix preserves lengths: ‖Qx‖2 =
‖x‖2 (Hint: Use properties of inner products). Conclude that multiplica-
tion by Q represents a rigid rotation.
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4. Prove the Pythagorean Theorem by induction: Given a set of n orthogonal
vectors {xi}

‖
n

∑

i=1

xi‖22 =
n

∑

i=1

‖xi‖22

5. Let A be an m×n matrix where m > n, and let A have rank n. Let x,y ∈
IRm, such that y is the orthogonal projection of x onto the columnspace
of A. We want a formula for the projector P : IRm → IRm so that Px = y.

(a) Why is the projector not P = AAT ?

(b) Since y − x is orthogonal to the range of A, show that

AT (y − x) = 0 (2)

(c) Show that there exists v so that Equation (2) can be written as:

AT (Av − x) = 0 (3)

(d) Argue that AT A is invertible, so that Equation (3) implies that

v =
(

AT A
)−1

AT
x

(e) Finally, show that this implies that

P = A
(

AT A
)−1

AT

Note: If A has rank k < m, then we will need something different,
since AT A will not be full rank. The missing piece is the singular
value decomposition, to be discussed later.

6. The Orthogonal Decomposition Theorem: if x ∈ IRn and W is a (non-
zero) subspace of IRn, then x can be written uniquely as

x = w + z

where w ∈W and z ∈W⊥.

To prove this, let {ui}pi=1
be an orthonormal basis for W , define w =

(x,u1)u1 + . . . + (x,up)up, and define z = x−w. Then:

(a) Show that z ∈W⊥ by showing that it is orthogonal to every ui.

(b) To show that the decomposition is unique, suppose it is not. That
is, there are two decompositions:

x = w1 + z1, x = w2 + z2

Show this implies that w1−w2 = z2− z1, and that this vector is in
both W and W⊥. What can we conclude from this?

7. Use the previous exercises to prove the The Best Approximation The-

orem If W is a subspace of IRn and x ∈ IRn, then the point closest to x

in W is the orthogonal projection of x into W .
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