
5 The Decomposition Theorems

5.1 The Eigenvector/Eigenvalue Decomposition

1. Definition: Let A be an n × n matrix. Then an eigenvector-eigenvalue
pair is v 6= 0, λ where

Av = λv ⇒ (A− λI)v = 0 (4)

2. Remark: If Equation (4) has a nontrivial solution, then

det (A− λI) = 0

which leads to solving for the roots of a polynomial of degree n. This
polynomial is called the characteristic polynomial.

3. Remark: We solve for the eigenvalues first, then solve for the nullspace
of (A− λiI) by solving

(A− λiI)x = 0

4. Remark: Note that it is possible that one eigenvalue is repeated. This
may or may not correspond with the same number of eigenvectors.

5. Definition: If eigenvalue λ is repeated k times, then the algebraic multi-

plicity of λ is k.

6. Definition: If eigenvalue λ has k associated independent eigenvectors, λ
has geometric multiplicity k.

7. Example: Compute the eigenvalues and eigenvectors for: (i) the 2 × 2
identity matrix, (ii) The matrix (in Matlab notation): [1 2;0 1]

8. Theorem: If aλ is the algebraic multiplicity of λ and gλ is the geometric
multiplicity, then

aλ ≥ gλ

We won’t prove this here.

9. Definition: If, for some eigenvalue λ of A, we have that aλ > gλ, A is
said to be defective.

10. Definition: The set of independent eigenvectors associated with an eigen-
vector λ, together with 0 forms a vector space. This space is called the
eigenspace, and is denoted by Eλ.

11. Theorem: If X is square and invertible, then A and X−1AX have the
same eigenvalues.

12. Exercise: Prove the previous theorem.
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13. Remark: One method of characterizing eigenvalues in terms of the de-
terminant and trace of a matrix:

det(A) = Πn
i=1λi trace(A) =

∞
∑

i=1

λi

14. Remark: We will be especially interested in symmetric matrices. The
rest of this section is devoted to them.

15. Definition: A matrix A is orthogonally diagonalizeable if there is an or-
thogonal matrix Q and diagonal matrix D so that so that A = QDQT .

16. The Spectral Theorem: If A is an n× n symmetric matrix, then:

(a) A has n real eigenvalues (counting multiplicity).

(b) For all λ, aλ = gλ.

(c) The eigenspaces are mutually orthogonal.

(d) A is orthogonally diagonalizeable, with D = diag(λ1, λ2, . . . , λn).

Some remarks about the Spectral Theorem:

• We assume that inside each eigenspace, we have an orthonormal ba-
sis of eigenvectors. This is not a restriction, since we can always
construct such a basis using Gram-Schmidt.

• If a matrix is real and symmetric, the Spectral Theorem says that its
eigenvectors form an orthonormal basis for IRn.

• The first part is somewhat difficult to prove in that we would have
to bring in more machinery than we would like. If you would like to
see a proof, it comes from the Schur Decomposition, which is given,
for example, in “Matrix Computations” by Golub and Van Loan.

17. The following is a proof of part (c). Supply justification for each step:
Let v1, v2 be eigenvectors from distinct eigenvalues, λ1, λ2. We show that
v1 · v2 = 0:

λ1v1 · v2 = (Av1)
T
v2 = v

T
1 AT

v2 = v
T
1 Av2 = λ2v1 · v2

Now, (λ1 − λ2)v1 · v2 = 0.

18. The Spectral Decomposition: Since A is orthogonally diagonalizable,
then

A = (q1 q2 . . . qn)











λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λn





















q
T
1

q
T
2

...
q

T
n










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so that:

A = (λ1q1 λ2q2 . . . λnqn)











q
T
1

q
T
2

...
q

T
n











so finally:
A = λ1q1q

T
1 + λ2q2q

T
2 + . . . + λnqnq

T
n

That is, A is a sum of n rank one matrices, each of which is a projection
matrix.

19. Matlab Exercise: Verify the spectral decomposition for a symmetric
matrix. Type the following into Matlab (the lines that begin with a %

denote comments that do not have to be typed in).

%Construct a random, symmetric, 6 x 6 matrix:

for i=1:6

for j=1:i

A(i,j)=rand;

A(j,i)=A(i,j);

end

end

%Compute the eigenvalues of A:

[Q,L]=eig(A); %NOTE: A = Q L Q’

%L is a diagonal matrix

%Now form the spectral sum

S=zeros(6,6); for i=1:6

S=S+L(i,i)*Q(:,i)*Q(:,i)’;

end

max(max(S-A))

Note that the maximum of S−A should be a very small number! (By the
spectral decomposition theorem).

5.2 The Singular Value Decomposition

There is a special matrix factorization that is extremely useful, both in applica-
tions and in proving theorems. This is mainly due to two facts, which we shall
investigate in this section: (1) We can use this factorization on any matrix, (2)
The factorization defines explicitly the rank of the matrix, and all four matrix
subspaces.

In what follows, assume that A is an m× n matrix (so A maps IRn to IRm).
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1. Remark: Although A itself is not symmetric, AT A is n × n and sym-
metric. Therefore, it is orthogonally diagonalizable. Let {λi}

n

i=1
and

V = [v1,v2, . . . ,vn] be the eigenvalues and orthonormal eigenvectors.

2. Exercise: Show that λi ≥ 0 for i = 1..n by showing that ‖Avi‖
2
2 = λi.

3. Definition: We define the singular values of A by:

σi =
√

λi

where λi is an eigenvalue of AT A.

4. Remark: In the rest of the section, we will assume any list (or diagonal
matrix) of eigenvalues of AT A (or singular values of A) will be ordered
from highest to lowest: λ1 ≥ λ2 ≥ . . . ≥ λn.

5. Exercise: Prove that, if vi and vj are distinct eigenvectors of AT A, then
their corresponding images, Avi and Avj , are orthogonal.

6. Exercise: Prove that, if x = α1v1 + . . . αnvn, then

‖Ax‖2 = α2
1λ1 + . . . + α2

nλn

7. Exercise: Let W be the subspace generated by the basis {vj}
n

j=k+1
,

where vj are the eigenvectors associated with the zero eigenvalues of AT A
(therefore, we are assuming that the first k eigenvalues are NOT zero).
Show that W = Null(A).

8. Exercise: Prove that if the rank of AT A is r, then so is the rank of A.

9. Remark: Define

ui =
1

‖Avi‖2
Avi =

1

σi

Avi

and let U be the matrix whose ith column is ui.

10. Remark: This definition only makes sense sense for the first r vectors v

(otherwise, Avi = 0). Thus, we’ll have to extend the basis to span all of
IRm.

11. Exercise: Sketch how you might do this.

12. Exercise: Show that ui is an eigenvector of AAT whose eigenvalue is also
λi.

13. Exercise: Show that AT
ui = σivi

14. Remark: So far, we have shown how to construct two matrices, U and V
given a matrix A. That is, the matrix V is constructed by the eigenvectors
of AT A, and the matrix U can be constructed using the v’s or by finding
the eigenvectors of AAT .
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15. Exercise: Let A be m× n. Define the m× n matrix

Σ = diag(σ1, . . . , σn)

where σi is the ith singular value of the matrix A. Show that

AV = UΣ

16. The Singular Value Decomposition (SVD) Let A be any m × n
matrix of rank r. Then

A = UΣV T

where U,Σ, V are the matrices defined in the previous exercises. That is,
U is an orthogonal m ×m matrix, Σ is a diagonal m × n matrix, and V
is an orthogonal n× n matrix. The u’s are called the left singular vectors

and the v’s are called the right singular vectors.

17. Remark: Keep in mind the following relationship between the right and
left singular vectors:

Avi = σiui

AT
ui = σivi

18. Computing The Four Subspaces to a matrix A. Let A = UΣV T

be the SVD of A which has rank r. Be sure that the singular values are
ordered from highest to lowest. Then:

(a) A basis for the columnspace of A, R(A) is {ui}
r

i=1

(b) A basis for nullspace of A, N (A) is {vi}
n

i=r+1

(c) A basis for the rowspace of A, R(AT ) is {vi}
r

i=1

(d) A basis for the nullspace of AT , N (AT ) is {ui}
m

i=r+1

19. We can also visualize the right and left singular values as in Figure 2. We
think of the vi as a special orthogonal basis in Rn (Domain) that maps
to the ellipse whose axes are defined by σiui.

20. The SVD is one of the premier tools of linear algebra, because it allows us
to completely reveal everything we need to know about a matrix mapping:
The rank, the basis of the nullspace, a basis for the column space, the basis
for the nullspace of AT , and of the row space. This is depicted in Figure
3.

21. Lastly, the SVD provides a decomposition of any linear mapping into two
“rotations” and a scaling. This will become important later when we try to
deduce a mapping matrix from data (See the section on signal separation).
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Figure 2: The geometric meaning of the right and left singular vectors of the
SVD decomposition. Note that Avi = σiui. The mapping x → Ax will map
the unit circle on the left to the ellipse on the right.
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Figure 3: The SVD of A ([U,S,V]=svd(A)) completely and explicitly describes
the 4 fundamental subspaces associated with the matrix, as shown. We have
a one to one correspondence between the rowspace and columnspace of A, the
remaining v’s map to zero, and the remaining u’s map to zero (under AT ).
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22. Exercise: Compute the SVD by hand of the following matrices:

(

1 1
0 0

)





0 2
0 0
0 0





23. Remark: If m or n is very large, it might not make sense to keep the full
matrix U and V .

24. The Reduced SVD Let A be m× n with rank r. Then we can write:

A = Ũ Σ̃Ṽ T

where Ũ is an m× r matrix with orthogonal columns, Σ̃ is an r× r square

matrix, and Ṽ is an n× r matrix.

25. Theorem: (Actually, this is just another way to express the SVD). Let
A = UΣV T be the SVD of A, which has rank r. Then:

A =

r
∑

i=1

σiuiv
T
i

Therefore, we can approximate A by the sum of rank one matrices.

26. Matlab and the SVD Matlab has the SVD built in. The function
specifications are: [U,S,V]=svd(A) and [U,S,V]=svd(A,0) where the
first function call returns the full SVD, and the second call returns a
reduced SVD- see Matlab’s help file for the details on the second call.

27. Matlab Exercise: Image Processing and the SVD. First, in Matlab, load
the clown picture:

load clown

This loads a matrix X and a colormap, map, into the workspace. To see
the clown, type:

image(X); colormap(map)

We now perform a Singular Value Decomposition on the clown. Type in:

[U,S,V]=svd(X);

How many vectors are needed to retain a good picture of the clown? Try
performing a k−dimensional reconstruction of the image by typing:

H=U(:,1:k)*S(1:k,1:k)*V(:,1:k)’; image(H)

for k = 5, 10, 20 and 30. What do you see?
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5.2.1 Generalized Inverses

Let a matrix A be m × n with rank r. In the general case, A does not have
an inverse. Is there a way of restricting the domain and range of the mapping
y = Ax so that the map is invertible?

We know that the columnspace and rowspace of A have the same dimensions.
Therefore, there exists a 1-1 and onto map between these spaces, and this is our
restriction.

To “solve” y = Ax, we replace y by its orthogonal projection to the columnspace
of A, ŷ. This gives the least squares solution, which makes the problem solvable.
To get a unique solution, we replace x by its projection to the rowspace of A,
x̂. The problem

ŷ = Ax̂

now has a solution, and that solution is unique. We can rewrite this problem
now in terms of the reduced SVD of A:

x̂ = V V T
x, ŷ = UUT

y

Now we can write:
UUT

y = UΣV T
(

V V T
x
)

so that
V Σ−1UT

y = V V T
x

(Exercise: Verify that these computations are correct!)
Given an m× n matrix A, define its pseudoinverse, A† by:

A† = V Σ−1UT

We have shown that the least squares solution to y = Ax is given by:

x̂ = A†y

where x̂ is in the rowspace of A, and its image, Ax̂ is the projection of y into
the columnspace of A.

Geometrically, we can understand these computations in terms of the four
fundamental subspaces.

-

6

-

6

IRn IRm

-Ax = y

q y

R(AT )

N (A)

R(A)

N (AT )

18



In this case, there is no value of x ∈ IRn which will map onto y, since
y is outside the columnspace of A. To get a solution, we project y onto the
columnspace of A as shown below:

-

6

-

6

q yŷ = UUT
y

R(AT )

N (A)

R(A)

N (AT )

Now it is possible to find an x that will map onto ŷ, but if the nullspace of
A is nontrivial, then all of the points on the dotted line will also map to ŷ

-

6

-

6

q yŷ

r
x̂ = V V T

x
r
x

R(AT )

N (A)

R(A)

N (AT )

Finally, we must choose a unique value of x for the mapping- We choose the
x inside the rowspace of A.

This is a very useful idea, and it is one we will explore in more detail later.
For now, notice that to get this solution, we analyzed our four fundamental
subspaces in terms of the basis vectors given by the SVD.

Exercises

1. Consider
[

2 1 −1
3 1 2

]





x1

x2

x3



 =

[

5
1

]

(a) Before solving this problem, what are the dimensions of the four
fundamental subspaces?

(b) Use Matlab to compute the SVD of the matrix A, and solve the
problem by computing the pseudoinverse of A directly.
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(c) Check your answer explicitly and verify that x̂ and ŷ are in the
rowspace and columnspace. (Hint: If a vector x is already in the
rowspace, what is V V T

x?)

2. Consider












2 1 −1 3
−1 0 1 −2

7 2 −5 12
−3 −2 0 −4

4 1 −3 7





















x1

x2

x3

x4









=













5
1
0

−2
6













(a) Find the dimensions of the four fundamental subspaces by using the
SVD of A (in Matlab).

(b) Solve the problem.

(c) Check your answer explicitly and verify that x̂ and ŷ are in the
rowspace and columnspace.

3. Write the following in Matlab to reproduce Figure 2:

theta=linspace(0,2*pi,30);

z=exp(i*theta);

X=[real(z);imag(z)]; %The domain points

m=1/sqrt(2);

A=(m*[1,1;1,-1])*[1,0;0,3];

Y=A*X; %The image of the circle

t=linspace(0,1);

vec1=[0;0]*(1-t)+[0;1]*t; %The basis vectors v

vec2=[0;0]*(1-t)+[1;0]*t;

Avec1=A*vec1; Avec2=A*vec2; %Image of the basis vectors

figure(1) %The domain

plot(X(1,:),X(2,:),’k’,vec1(1,:),vec1(2,:),’k’,

vec2(1,:),vec2(2,:),’k’);

axis equal

figure(2) %The image

plot(Y(1,:),Y(2,:),’k’,Avec1(1,:),Avec1(2,:),’k’,

Avec2(1,:),Avec2(2,:),’k’);

axis equal

4. In the previous example, what was the matrix A? The vectors v? The
vectors u? The singular values σ1, σ2?

Once you’ve written these down from the program, perform the SVD of
A in Matlab. Are the vectors the same that you wrote down?

NOTE: These show that the singular vectors are not unique- they vary by

±v, or ±u.
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6 Interactions Between Subspaces and the SVD

Suppose that a matrix A is p×n and B is q×n. Then we have four fundamental
subspaces for each of A, B. In particular, the row spaces and null spaces of A
and B are all in IRn. Note that this interpretation is looking at the matrix A
as containing p sample data points from IRn, and the matrix B as containing q
sample data points from IRn.

It is natural to ask about the interaction of these subspaces of IRn, which
are enumerated below:

• The rowspace of A separate from B. This is also the intersection of the
rowspace of A with the nullspace of B.

• The rowspace of B separate from A. This is also the intersection of the
rowspace of B with the nullspace of A.

• The intersection of the rowspaces of A and B.

• The intersection of the nullspaces of A and B.

How can we obtain a basis for the intersection of nullspaces? This is in fact
fairly easy as long as p, q are relatively small. We construct a new matrix Z
that is p + q × n:

Z =

[

A
B

]

and find the nullspace of this via the SVD of Z.
Exercise: Prove that, if v ∈ IRn, and Zv = 0, then v ∈ Null(A) ∩Null(B).
Exercise: Prove directly that, if v ∈ IRn, and Zv 6= 0, then v ∈ Row(A) ∪
Row(B).

Note that the first exercise proves the second in that:

(Null(A) ∩Null(B))
c

= Null(A)c ∪Null(B)c = Row(A) ∪ Row(B)

where c is the complement of the set.

We can find bases for the Row(A) and Row(B) directly- Let us define the
two reduced SVDs:

A = UAΣAV T
A , B = UBΣBV T

B

Then the columns of VA, VB form a basis for the rowspace of A and the rowspace
of B respectively. Before continuing further in the discussion, lets consider the
idea of distance and angles between two subspaces.
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6.1 Angles Between Subspaces

As in Golub and Van Loan, let F,G be two subspaces of IRm. Without loss of
generality, assume:

p = dim(F ) ≥ dim(G) = q ≥ 1

The principal angles θ1, . . . , θq ∈
[

0, π
2

]

between F and G are defined recursively
by:

cos(θk) = max
u∈F

max
v∈G

uT v = uT
k vk

subject to the additional constraints that u, v be unit length and they are orthog-
onal to the previously found vectors u1, . . . , uk−1 and v1, . . . vk−1. The vectors
u1, . . . uq and v1, . . . , vq are called the principal vectors between subspaces F
and G.

Some remarks about this definition:

• Since u, v are normalized, the maximum value of uT v is 1, corresponding
to θ = 0. Thus, principal vectors associated with this value of θ are
the same. These vectors will also give the an orthonormal basis for the
intersection of F,G.

• Since θ is restricted, the smallest value of uT v is zero, corresponding to
θ = π/2. The corresponding vectors of F and G will be orthogonal.

• We can define the distance between subspaces F and G if p = q by using
the largest principal angle, θp:

dist(F,G) =
√

1− cos2(θp) = sin(θp)

For example, if F and G are the same subspace, then θk = 0 for k =
1, . . . , p, and the distance between them is 0. On the other extreme, if F
and G are orthogonal, then θk = π/2 for k = 1, . . . , p and the distance
between them is 1.

6.2 Computing the principal angles and vectors.

Here we give an intuitive idea behind the algorithm; for a more details see Golub
and Van Loan (Chapter 12).

Given two sets of orthonormal basis vectors for subspaces F and G (we’ll
use VA and VB found earlier), we can write:

uT v = yT V T
A VBz

so that u = VAy and v = VBz. Thus, if U, V are the matrices whose columns
are the principal vectors, then

UT V = Y T (V T
A VB)Z = diag(cos(θ1), . . . , cos(θq)) = D
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Notice that this is the SVD of V T
A VB :

V T
A VB = Y DZT

Note again that we have not proven anything- this was just an observation. For
a proof, we would need additional facts about the SVD of a matrix that would
take us too far afield.

Example: Let F,G be subspaces of IR3, where F is the x − y plane and G is
the x− z plane. Clearly, there is a one-dimensional intersection. We show this
using the computations in the previous discussion.

F = span











1
0
0



 ,





0
1
0











, G = span











1
0
0



 ,





0
0
1











We can use these basis vectors as VA, VB respectively. Now,

V T
A VB =

[

1 0 0
0 1 0

]





1 0
0 0
0 1



 =

[

1 0
0 0

]

Since this matrix is already in diagonal form,

[

1 0
0 0

]

= I

[

cos(θ1) 0
0 cos(θ2)

]

IT

so that Y = Z = I and

U = VAI = VA, V = VBI = VB

Therefore, u1 = v1 corresponding to the subspace intersection, and the distance
between the subspaces is 1. We also see that there is no nontrivial intersection
between the nullspaces of F,G. We would see this if we took the SVD of
[V T

A V T
B ]T as suggested at the beginning of this section, since there would be

no zero singular values.
Similarly, we can find the intersection of F with G⊥. In this case,

V T
A VB =

[

1 0 0
0 1 0

]





0
1
0



 =

[

0
1

]

= Y · 1 · 1 = Y · 1 · ZT

Since this “matrix” is already in diagonal form,

U = VAY =





0
1
0



 , V = VB · 1 =





0
1
0




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