
Chapter 5

The Best Basis

5.1 Introduction

The problem we want to consider is this: We’re given p points in IRn. Find the “best” k−dimensional basis
for the data.

There are a couple of things that will make our job easier:

• We will assume that the data has been mean-subtracted, so that the mean is zero (in IRn).

• The basis is orthonormal (each basis vector is in IRn).

• To find the “best” basis will require an error function. We will then minimize it.

At the end of this section, you’ll see that the best k−dimensional basis for your data (regardless of k)
is given by the first k eigenvectors of the covariance matrix, which are typically computed using the
Singular Value Decomposition (SVD).

5.1.1 The Covariance Matrix, Revisited

Suppose we have p data points in IRn, {x1,x2, . . . ,xp}, and they are organized column-wise in an n × p
matrix X.

As we recall, the n × n covariance matrix for data in IRn measures the covariance between the data in
coordinate i and the data in coordinate j. Using the n × p matrix X, then define x̄ ∈ IRn as the mean,
then the (i, j)th entry of the covariance matrix is given by the following, where we’re taking the covariance
between the ith and jth row of X.

Cij =
1

p− 1

p�

k=1

(xik − x̄i)(xjk − x̄j)

We will typically assume the mean is zero, so be sure and mean-subtract your data matrix before finding a
basis for your data! With zero mean,

Cij =
1

p− 1

p�

k=1

xikxjk

If we think of this computation in terms of the matrix X as in the figure below, we see that Cij can be
computed using a dot product between row i of X and column j of XT :
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Therefore, we see that the n× n matrix C can be computed one of two equivalent ways:

C =
1

p− 1
XXT or C =

1

p− 1

n�

k=1

xkx
T
k

Finally, we recognize that the covariance matrix is symmetric, so the Spectral Theorem applies. In
particular, there is an orthonormal matrix P and a diagonal matrix D so that

C = PDPT

where the columns of P form the eigenvectors associated with the diagonal elements of D (which are typically
written largest to smallest).

To connect this to the SVD of the data matrix X, if X is n× p (so that data is stored column-wise), and
we write the reduced SVD as:

X = UΣV T

Then

C =
1

p− 1
XXT =

1

p− 1
UΣV TV ΣTUT = U

�
1

p− 1
Σ2

�
UT

We see a relationship between the singular values of X, σi, and the eigenvalues of the covariance matrix, λ̂i:

1

p− 1
σ2
i = λ̂i

So far, we have defined a data matrixX, and we’ve looked at its covariance matrix C, and we’ve discovered
that the eigenvectors of the covariance matrix are the left singular vectors of the data matrix (when the data
is written column-wise and has been mean subtracted).

We’ll be getting back to the best basis in a moment, but first we want to make a few more observations.

Projections and the Mean

Suppose you have your p data points in IRn that have not been mean subtracted, and you have a vector u
onto which we want to project the data.

First, if we project one point x onto our (unit) vector u, then the projection is (xTu)u, and the scalar
projection is the number (xTu). Similarly, projecting all the data gives us p real numbers (the scalar
projections): �

uTx1,u
Tx2, . . . ,u

Txp

�

so the mean of the projected data is given by

1

p

�
uTx1 + uTx2 + . . .+ uTxp

�
= uT (x1 + x2 + . . .+ xp)

p
= uT x̄

Therefore, the mean of the projection is the projection of the mean. In particular, if the mean of a
data set is zero, and the data is projected to a vector (or subspace), then the new mean is also zero.
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Projections and the Variance

In the last section, we saw how the mean and the projection interacted. In this section, let’s see how the
variance is affected. We’ll keep our previous general data set, p points in IRn, and we’ll suppose that the
data has zero mean in IRn. By what we showed, the scalar projections would also have zero mean.

If we project the p vectors onto an arbitrary unit vector u, and consider the scalar projections, then
the resulting variance (in the direction of u will be:

S2
u =

1

p− 1

p�

k=1

(uTxk)
2 =

1

p− 1

p�

k=1

uTxkx
T
k u = uT

�
1

p− 1

p�

k=1

xkxk
T

�
u = uTCu

This is actually a very key quantity, and will come up in the next section. We will look at this quantity
more closely in a bit, but let’s look at what happens in one special case: Suppose that u is an eigenvector
of the covariance C corresponding to the first eigenvalue, λ̂1 using our previous notation. Then:

uTCu = uT λ̂1u = λ̂1

Therefore, if we project all the data to the first eigenvector of C, the new variance will be the first eigenvalue
of C.

Reconstruction Error and the Basis

Given a specific vector x ∈ IRn and an arbitrary orthonormal basis, φ1,φ2, . . . ,φn, we can write

x = (φT
1 x)φ1 + (φT

2 x)φ2 + . . .+ (φT
nx)φn

so that the magnitude of x can be written as:

�x�2 = (φT
1 x)

2 + (φT
2 x)

2 + . . .+ (φT
nx)

2.

We can use the same algebraic manipulation that we used in the last section to rewrite this as:

�x�2 = φT
1 xx

Tφ1 + φT
2 xx

Tφ2 + . . .+ φT
nxx

Tφn.

We can break this up and define the error using one vector φ1:

�x�2 = φT
1 xx

Tφ1 + �xerr�2

Now do this for all p data points. For any single vector φ1, we sum these together:

�x1�2 = φT
1 x1x

T
1 φ1 + �x(1)

err�2

+�x2�2 = φT
1 x2x2

Tφ1 + �x(2)
err�2

...

�xp�2 = φT
1 xpxp

Tφ1 + �x(p)
err�2

p�

k=1

�xk�2 = φT
1

�
p�

k=1

xkxk
T

�
φ1 +

p�

k=1

�x(k)
err�2

We can multiply everything by 1/(p− 1) to make things work. That is,

1

p− 1

p�

k=1

�xk�2 = φT
1 Cφ1 +

1

p− 1

p�

k=1

�x(k)
err�2. (5.1)
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In light of this equation, let us now define an error function using an arbitrary orthonormal basis, φ1, . . . ,φn.
The error we get when using a one dimensional representation of our data is given by

E(φ2, . . . ,φn) =
1

p− 1

p�

n=1

�x(n)
err �2.

Notice that the left side of Equation 5.1 is constant (it is the sum of the magnitudes of all the known data).
Therefore, minimizing the error function (the second term) is equivalent to maximizing the first term,
φT

1 Cφ1.

Here now is our algorithm for find the “best” basis:

1. Find the unit vector φ1 so that φT
1 Cφ1 is maximized.

2. We “project out” this vector so that the ith data point now becomes:

x(i) = x(i) − Projφ1
(x(i))

3. Re-compute C.

4. Repeat from Step 1 until we have enough basis vectors.

In practice, we will not need to do this- there is an easier way!

5.2 The Best Basis and the Eigenvectors

We have shown that finding the best basis reduces to maximizing the quantity:

max
φ �=0

φTCφ

φTφ

where we divide by the magnitude (squared) to enforce the fact that we want a unit vector, and we want to
stay away from the zero vector.

We know that the eigenvectors of the covariance matrix form an orthonormal basis for IRn, so we can
write any vector as a linear combination of them:

φ = c1v1 + c2v2 + · · ·+ cnvn = V c

Using the eigenvector-eigenvalue factorization C = V DV T , we can now write the numerator as:

φTCφ = (V c)T (V DV T )(V c) = cT (V TV )D(V TV )c = cTDc = c21λ1 + c22λ2 + · · ·+ c2nλn

Similarly, the denominator is:
φTφ = c21 + c22 + · · ·+ c2n

Let’s look at the coefficients of our expansion now. For λi, the coefficient in front is

ρi =
c2i

c21 + c22 + · · ·+ c2n

where ρi ≥ 0 and
�n

i=1 ρi = 1 (like a probability distribution). Let’s summarize where we are. We now see

that maximizing φTCφ is equivalent to choosing ρ1, ρ2, · · · , ρn so that each ρi ≥ 0 and they sum to 1, to
maximize the quantity:

ρ1λ1 + ρ2λ2 + · · ·+ ρnλn
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It is easy to see that, if the λi ≥ 0 and are ordered from largest to smallest, then:

λn ≤ ρ1λ1 + ρ2λ2 + · · ·+ ρnλn ≤ λ1.

To maximize our given quantity, we set c1 = 1 and the rest of the coefficients to zero. This leads us to our

main conclusion. The vector φ that maximizes the quantity maxφ �=0
φT

Cφ
φTφ

is given by v1, the eigenvector

corresponding to the largest eigenvalue of C. This is summarized by the theorem below:

The Best Basis Theorem

Given p points in IRn, the best k−dimensional basis is found by taking the first k eigenvectors of the covariance
matrix C. Equivalently, given the data in an n × p matrix X, the best k−dimensional basis is found by
taking the first k columns of the U , the left singular vectors of the SVD of X. Further, this is the “best”
basis for k = 1, 2, . . . , r, where r is the rank of X.

Speaking of Rank...

We discussed this briefly in an earlier section, but it is worth thinking about again.
It is useful to look at the rank as that number of basis vectors required to preserve some percentage of

the variance in the data. From our previous section on the covariance matrix, we had a relationship between
the eigenvalues of the covariance matrix, λ̂i and the singular values of X:

1

p− 1
σ2
i = λ̂i

so normalizing the set of eigenvalues is equivalent to doing it to the squared singular values:

λi =
λ̂i�n
j=1 λ̂j

=

1
p−1σ

2
i�n

j=1
1

p−1σ
2
j

=
σ2
i�n

j=1 σ
2
j

Now the λi are positive and sum to 1. The idea is to keep enough dimensions r so that

r�

i=1

λi ≥ τ but

r−1�

i=1

λi < τ.

In this case, we would say that it takes r dimensions to explain or encapsulate τ percent of the variance in
the data.

What should τ be? This is problem dependent. In some very noisy problems, you may only want to keep
τ ≈ 0.6, while with very little noise, you might take τ ≈ 0.99.

5.2.1 The Dimensionality Reduction Step

Once we have our k basis vectors, what do we do with them? First, we create our low dimensional represen-
tation of the data. Initially, the data represents p points in IRn, and we want to reduce that to p points in
IRk- These are the coordinates of each point using our k−dimensional basis. That is, if UΣV T is the svd of
X (mean subtracted), then the k dimensional data is created by the following, where U is n× k, X is n× p,
and the low-dimensional representation Xcoords is k × p.

Xcoords = UTX

Especially if k = 2 or k = 3, we can then plot the low dimensional points in the plane or in 3-d. The
“reconstruction” of the data is the representation back in IRn using the k basis vectors.

Xrecon = UXcoords = UUTX

Remember that earlier we said that UTU = I, but UUT is the projection matrix taking data in IRn and
projecting it into the column space of U (so X �= UUTX unless the columns of X are already contained
within the column space of U).
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5.3 Connecting to Principal Components Analysis (PCA)

In PCA, the principal components are defined to be a sequence of k direction vectors, where the ith vector
is the direction of a line that best fits the data while being orthogonal to the first i− 1 vectors1.

You can see that the principal components of set of data are then equivalent to the k basis vectors we’ve
constructed (the first k eigenvectors of the covariance matrix). While PCA and the best basis are the same,
you will typically hear the language of statistics used in PCA, while we use the language of linear algebra in
constructing the best basis.

5.4 Exercises

Before doing the computer problems below, you should write down (using linear algebra notation) what
computations you want to make. If you have questions (especially with the coding), I’m happy to help.

1. Suppose we have p data points in IRn. Show that the variance of the data, projected to a standard
basis vector ei, returns the usual variance for the data in that dimension. (I want you to look back at
the computations we made for this in the text, “Projections and the Variance”).

2. Suppose we have two o.n. vectors u,v ∈ IRn. Given our p points in IRn, compute the covariance
between the data projected to u and the data projected to v, and (i) show that the result is

uTCv

(ii) In the special case that u,v are eigenvectors of the covariance matrix, how does this quantity
simplify?

3. Suppose we have 4 points in IR3 as organized in the matrix X (left and below), and let φ1 =
(1/

√
3)[1, 1, 1]T . Use a computer (Octave/Matlab, Python or R) to compute the three quantities

given in the formula to the right and below. In your script, be sure you’re actually computing the
covariance matrix and each quantity separately.

X =




1 2 −1 3
0 0 1 1

−1 1 2 1


 ,

1

p− 1

p�

k=1

�xk�2 = φT
1 Cφ1 +

1

p− 1

p�

k=1

�x(k)
err�2.

4. Using the data (and vector φ1) in the previous exercise, compuationally verify our statements: The
projection of the mean is the mean of the projection, and the variance of the data projected to φ1 is
φT

1 Cφ1.

5. Verify numerically that the variance of the projected data to the first best basis vector (first one) is
given by the first eigenvalue of the covariance matrix. (Careful- if you use the eig command, the
eigenvalues are not ordered).

6. Continuing with the data from Problem 3, if we retained two of the basis vectors, how much variance
(as a percentage) is “explained” by them? (This refers to the discussion in the text about how to
compute the rank).

7. Load the clown data, we obtain a matrix X that is 200× 320. Treat this as 320 vectors in IR200.

(a) Double center the data in X (call the result Xm).

(b) Find the best two dimensional basis for the vectors in Xm, then project the data to two dimensions
and plot the result.

(Question to think about, you don’t need to answer: Did you expect a pattern or not?)

(c) Reconstruct the data back in IR200, and show the result as an image (don’t add the means back
in).

1Wikipedia, pulled March 2021
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5.5 A Summary

Before we continue, let’s summarize the process for PCA (or best basis), and let’s discuss what you can get
out of the PCA. First, the process- It’s short.

Principal Components Analysis

Let X store p points, each in IRn so X is n× p. To find the best basis (in IRn):

1. Compute the mean so that x̄ ∈ IRn.

2. Mean subtract the data, put in the n× p matrix Xm.

3. For the resulting data, take the SVD:

Xm = UΣV T

4. The best basis (or principal components) are the first k columns of U .

Once this is done, what can we do with it? Here is a list of common tasks.

• Visualize the mean and eigenvectors.

The eigenvectors of the covariance matrix (the columns of U) typically carry very interesting information-
What do they look like? In the application below, the eigenvectors can be visualized as photos, but
you can also simply plot an eigenvector if that has meaning (plot the vector index along the horizontal
axis, and the vector values along the vertical axis. In Matlab, if v is a vector, this would be plot(v).

• Determine the rank.

We talked about this earlier- The rank of a matrix is critical to know if you’ll be constructing the
pseudo-inverse, or if you simply want to reduce the dimensionality of the data (see the next item). One
way to determine the rank is to look for large breaks in the plot of the singular values (the diagonal
elements of Σ). A second way is to construct the eigenvalues of the covariance matrix, and retain
enough dimensions so that the resulting space encapsulates a certain percentage of the variance.

• Reduce the dimensionality of the data.

This is the primary goal of most applications of PCA. If Xm is n × p (p points in IRn, with mean
subtracted), then the following is the k × p, or k−dimensional, representation of the p points- matrix
L (for low dimensional) is k × p:

L = U(:, 1 : k)TXm

The Matlab-esque notation means to take all rows, but only the first k columns of U .

• Visualize the data that has been reduced in dimension.

It’s often a good idea to plot the first rows of L in IR2 just to be sure it gives you what you expect. There
might be even more interesting information using other basis vectors down further in the decomposition
(corresponding to lower rows of L)- We’ll actually see an example below.

• Project new data using the new basis.

If D is m×n (m points in IRn), and Dm is the matrix with the mean of X subtracted from the columns,
then the projected data in matrix P is also m× n and is given by:

P = U(:, 1 : k)U(:, 1 : k)TDm

You can then compare P to Dm (or add the mean back to both matrices) to see if the new data is well
represented by the basis.
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Before we leave this discussion for an application, have you considered what the matrix V (from the
SVD of X) represents? It represents a scaled version of the coordinates (or low dimensional representation).
How? If Xm = UΣV T is the reduced SVD, then

L = UTXm = UT (UΣV T ) = ΣV T

And remember that Σ is just a diagonal matrix (k × k) and V is p × k. Multiplying by the diagonal just
scales each column of V , so V is a scaled version of the k−dimensional representation of the data!

5.6 Application: Eigenfaces

Consider the set of all photos of some fixed width and length (say a× b) and these are photos of faces. To
be even more specific, let’s set the coordinates of the eyes to be the same in all photos.

As you might imagine, the dimension of this “face space” should be quite large, since we’re representing
all possible faces here. However, should it fill up IRab? If you were to take an arbitary vector in IRab and
visualize it as an a × b photo, what would you see? The image would probably be just noise- the set of
“faces” is then (hopefully) only a “small” dimensional subspace of IRab, and that gives us some reason to
expect that we can find a smallish number of template faces so that every face is a linear combination of the
templates.

What are these template faces? They are basis vectors in IRab, meaning that each basis vector can be
visualized as an a× b image. We know that these basis vectors are the eigenvectors of the covariance matrix
of the photo data, so we’ll call them eigenfaces.

In out next example, we’ll explore face space a bit and see some interesting things.

5.6.1 Project Example: The Yale Database

The data we’ll look at is a portion of the Extended Yale Database below linked below if you want to have a
look (good as of March 2021):

Extended Yale Database

Further, this little project is adapted from Brunton and Kutz’ text on “Data Driven Science and Engi-
neering”, which is at databookuw.com. The had a very cute example!

As a side note, it’s important to distinguish between an m× n matrix (which as m rows and n columns)
versus an m × n image, which has a width of m pixels and a height of n pixels (not my fault!). The
images below are said to be 168× 192, but are typically stored in a 192× 168 matrix (for future reference,
168× 192 = 32256).

Discussion of the Data

We’ll begin with a discussion of the dataset allFaces2.mat, which will be available from our class website.
Here is a discussion of the datasets you’ll see stored in this file.

• faces is 32256× 2410 matrix, representing 2410 photos, each of which is 192× 168 (as a matrix).

• Constants n = 192 and m = 168.

• nfaces is a vector with 38 elements, each representing one of the persons posing for photos. The datain
faces is stored in order with all the poses for the first person first, then the second person, and so on.
The vector nfaces stores the number of poses each person has. For example, the first person has 64
poses, so nfaces(1) is 64.

• Dog is an image of the same size as the photos of the people, but is the grayscale photo of a dog.

66



Figure 5.1: The first 36 of the 38 persons in the file are shown to the left. To the right, we show a sample
of 36 poses for the first person (out of 64 included in the data file). Each photo is 168× 192 (as an image).

Visualizing a Sample of Data

In Figure 5.1, the first 36 of the 38 persons in the file are shown to the left. To the right, we show a sample
of 36 poses for the first person (out of 64 included in the data file).

Project Outline

We’re going to find the best basis for our face data. Since we have so many photos, we’re going to try
“training” the PCA on just the photos from the first 36 people, leaving the last two people out to see how
well we have captured “face space”. Continuing, here’s what we’ll do on the computer:

1. Load the data. The “training” data will be the first 2282 columns.

2. Find the mean, then mean-subtract the data. Visualize the mean.

3. Find the SVD.

4. Look at the singular values to see if there is any clear break.

5. Look at some sample eigenfaces (columns of U).

6. Project persons 2 and 7 into the plane spanned by the 5th and 6th basis vector, and plot the result.

7. Look at reconstructions of person 37 using dimension: 50, 150, 500, 1000.

8. Look at whether or not we can reconstruct the dog’s face using a basis from people!

Project Implementation: Matlab/Octave

Side Remark: This data will most likely be too large to run on Octave-online. However, if you have Octave
set up on your home PC, it should work. For the homework, we’ll be using a smaller data set.
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%% Eigenface Example using Yale Database

%%Step 1: Load the data and create the training subset using 36 people.

% The total number of columns needed is: sum(nfaces(1:36))

load allFaces2.mat

trainingFaces=faces(:,1:sum(nfaces(1:36)));

%% Step 2: Find the mean, mean-subtract the data. Visualize the mean

% as a photo!

avgFace=mean(trainingFaces,2);

Xm=trainingFaces-avgFace;

figure(1)

imagesc(reshape(avgFace,n,m));

colormap(gray); axis off; axis square

%% Step 3: Compute the SVD.

[U,S,V]=svd(Xm,’econ’);

%% Step 4: Look at the singular values; usually a log plot for high dimensions.

plot(log(diag(S))); % At approx 2262, we see a big drop- this is the rank.

%% Step 5: Let’s look at some eigenfaces! Here are the first four:

figure(2)

for j=1:4

subplot(2,2,j)

imagesc(reshape(U(:,j),n,m));

colormap(gray); axis off; axis square;

end

%% Step 6: Project the poses from persons 2 and 7 into the plane spanned by

% basis vectors 5 and 6. Don’t worry about the formulas used to determine

% the columns. They’re included here in case you want to change 2 and 7

% to other people.

P1=2; P2=7; Bas1=5; Bas2=6;

P1cols=sum(nfaces(1:P1-1))+1:sum(nfaces(1:P1));

P2cols=sum(nfaces(1:P2-1))+1:sum(nfaces(1:P2));

Data=faces(:,[P1cols,P2cols]) - avgFace;

Coords=U(:,[Bas1,Bas2])’*Data; % This is two dimensional data

figure(3)

plot(Coords(1,1:nfaces(P1)),Coords(2,1:nfaces(P1)),’ro’);

hold on

plot(Coords(1,nfaces(P1)+1:end),Coords(2,nfaces(P1)+1:end),’k^’);

hold off

%% Step 6A: Optional subplot with the two faces and positive/negative

% 5th basis vector.
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subplot(2,2,1)

imagesc(reshape(faces(:,65),n,m));

colormap(gray); axis off; axis square;

subplot(2,2,2)

imagesc(reshape(U(:,5),n,m));

colormap(gray); axis off; axis square;

subplot(2,2,3)

imagesc(reshape(faces(:,381),n,m));

colormap(gray); axis off; axis square;

subplot(2,2,4)

imagesc(reshape(-U(:,5),n,m));

colormap(gray); axis off; axis square;

%% Step 7: Look at partial reconstructions of person 37 using rank 50, 150, 500, 1000

Data=faces(:,sum(nfaces(1:36))+1);

Data=Data-avgFace;

kdim=[50,150,500,1000];

figure(4)

for j=1:4

subplot(2,2,j)

Recon=U(:,1:kdim(j))*(U(:,1:kdim(j))’*Data);

imagesc(reshape(Recon+avgFace,n,m));

colormap(gray); axis off; axis square

end

%% Step 8: Repeat, for the photo of a dog!

Data=Dog;

Data=Data-avgFace;

kdim=[50,100,400,600,1600];

figure(5)

subplot(2,3,1)

imagesc(reshape(Dog,n,m));

colormap(gray); axis off; axis equal

for j=1:5

subplot(2,3,j+1)

Recon=U(:,1:kdim(j))*(U(:,1:kdim(j))’*Data);

imagesc(reshape(Recon+avgFace,n,m));

colormap(gray); axis off; axis equal

end

Project Implementation: Python

import matplotlib.pyplot as plt

import numpy as np

import scipy.io

# Step 0: set some parameters, load the original Matlab data

plt.rcParams[’figure.figsize’] = [8, 8]

plt.rcParams.update({’font.size’: 18})
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mat_contents = scipy.io.loadmat(’allFaces2.mat’)

faces = mat_contents[’faces’]

m = int(mat_contents[’m’])

n = int(mat_contents[’n’])

Dog = mat_contents[’Dog’]

nfaces = np.ndarray.flatten(mat_contents[’nfaces’])

#%%

# Step 1: Load the data

trainingFaces = faces[:,:np.sum(nfaces[:36])]

#%%

# Step 2: Find the mean, visualize it.

avgFace = np.mean(trainingFaces,axis=1) # size n*m by 1

Xm=trainingFaces-avgFace[:,np.newaxis];

plt.figure()

plt.imshow(np.reshape(avgFace,(m,n)).T)

plt.set_cmap(’gray’)

plt.title(’Mean Face’)

plt.axis(’off’)

plt.show()

#%%

# Step 3: Compute the SVD

U, S, VT = np.linalg.svd(Xm,full_matrices=0)

#%%

# Step 4: Plot the singular values.

plt.figure()

plt.plot(np.log(S))

#%%

# Step 5: Let’s look at some eigenfaces (first 4, pos and neg)

fig,axs = plt.subplots(2,2)

axs=axs.ravel()

for i in range(4):

axs[i].imshow(np.reshape(U[:,i],(m,n)).T)

fig,axs = plt.subplots(2,2)

axs=axs.ravel()

for i in range(4):

axs[i].imshow(np.reshape(-U[:,i],(m,n)).T)

axs[i].set_title(str(i))

#%%

## Step 6: Project person 2 and 7 onto basis vecs 5 and 6

P1 = 2 # Person number 2
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P2 = 7 # Person number 7

P1data = faces[:,np.sum(nfaces[:(P1-1)]):np.sum(nfaces[:P1])]

P2data = faces[:,np.sum(nfaces[:(P2-1)]):np.sum(nfaces[:P2])]

P1data = P1data - avgFace[:,np.newaxis]

P2data = P2data - avgFace[:,np.newaxis]

# Project onto PCA modes 5 and 6

PCACoordsP1 = U[:,4:6].T @ P1data

PCACoordsP2 = U[:,4:6].T @ P2data

plt.figure()

plt.plot(PCACoordsP1[0,:],PCACoordsP1[1,:],’d’,color=’k’,label=’Person 2’)

plt.plot(PCACoordsP2[0,:],PCACoordsP2[1,:],’^’,color=’r’,label=’Person 7’)

plt.legend()

plt.show()

# %%

## Step 7: Show eigenface reconstruction of image that was omitted from test set

plt.figure()

testFace = faces[:,np.sum(nfaces[:36])] # First face of person 37

plt.imshow(np.reshape(testFace,(m,n)).T)

plt.set_cmap(’gray’)

plt.title(’Original Image’)

plt.axis(’off’)

plt.show()

#%% Step 8: Reconstruct a dog from photos of people!

#

# Vector "Dog" needs to be reshaped for some reason...

Dog=np.reshape(Dog,(32256,))

testFace = Dog - avgFace

k_list = [50, 200, 500, 1000, 1600]

plt.figure()

fig,axs = plt.subplots(2,3)

axs=axs.ravel()

axs[0].imshow(np.reshape(Dog,(m,n)).T)

axs[0].axis(’off’)

for i in range(5):

reconFace = avgFace + U[:,:k_list[i]] @ ( U[:,:k_list[i]].T @ testFace)

axs[i+1].imshow(np.reshape(reconFace,(m,n)).T)

axs[i+1].axis(’off’)
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Project: Eigenfaces

Description of the data: Math350Homework.mat

• Matrix X that is 24138 26 (26 photos, each with 162 rows and 149 columns)

• Constants m = 162 and n = 149.

If you want to visualize the photos, you would reshape the corresponding column vector. For example, to
visualize the first four faces and put them together in one figure, we would type:

for jj=1:4

subplot(2,2,jj)

imagesc(reshape(X(:,jj),m,n));

axis off; axis equal; colormap(gray)

end

Our project is to use the provided code and previous example to do some analysis of this data set.

1. Compute the mean vector and represent it as a face (by plotting it).

2. Compute the first four eigenfaces (and represent them as faces). Put them together in one plot. In a
second plot, show what the “photographic negatives” of the eigenfaces look like.

3. What might be a good approximation to the rank of the matrix X (if our goal is to make the faces
recognizable, about 74% of the variance).

4. Plot the reconstruction of a randomly selected face using rank 2, 5, 10 and 15. Plot these (as photos)
together in one figure.

5. Plot the data using the best two dimensional representation using a new figure. Plot the first 13 data
points as asterisks and the remaining 13 as triangles.
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Chapter 6

A Best Nonorthogonal Basis

In this section, we examine a particular question whose solution will involve getting an optimal nonorthogonal
basis, which is quite contrary to our earlier chapters- in fact, the reader should ask why we would ever want
to use a non-orthogonal basis when it would be quite easy (using Gram-Schmidt) to construct an orthogonal
version of the same basis.

To answer this question, consider the synthetic data example in Figure 6.1. Here there is a definite
“natural” basis appearing in the data- and the basis vectors are not orthogonal. While the data was synthetic,
we do get similar types of data appearing in the problem of Blind Signal Separation. Consider the following
tasks:

1. We have a patient that is pregnant. Our overall goal is to listen to the fetus heartbeat, but when we
try, the sound of the mother’s heartbeat is mixed with the heartbeat of the fetus. Symmetrically, if
we were to try to listen to the heartbeat of the mother, we would also hear the heartbeat of the fetus.
Is it possible to gather these sounds on microphones and manipulate the data so that the mother’s (or
fetus) heartbeat has been isolated?

2. We have two microphones placed at random, but distinct, places in a room. We also have two people
speaking in the room (the placement of the people is distinct from the placement of the microphones-
we do not assume that each microphone is placed in front of each speaker). Is it possible to manipulate
the two mixtures of voices so that we can isolate each speaker’s voice?

The answer lies in a fairly new technique called Independent Component Analysis (ICA) (versus what we
studied earlier, principal components analysis, or PCA). In ICA, we assume that we have some underlying,
statistically independent, processes and that we are observing mixtures of these processes. Our goal is to
separate the mixtures.

This problem is also known as Blind Signal Separation, where we assume some unknown mixture of
signals, and we attempt at separating them.

This process (the problem and the solution) can also be framed in other terms- we will focus on the
geometric meaning of the problem, and will solve it using the techniques of linear algebra.

6.1 Set up the Signal Separation Problem

We will assume that there exists a “clean” separation of our observed mixture of two signals (we will be
explicit in what we mean by that momentarily, and we will discuss the more general case in a moment).
These signals, as time series, are two columns of a matrix S, so that S ∈ IRp×2, where p is the length of the
sample.

We will further assume that the mixtures we are observing are linear mixtures, so that the mixtures we
observe may be modeled as:

x1 = α1s1 + α2s2
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