
Chapter 4

Linear Algebra

When you work with numerical data, it is naturally organized as a (possibly multidimensional) matrix.
Therefore, linear algebra provides the natural context for working with data, and the theory of linear algebra
can also give us methods for performing an analysis of that data.

First up is a little review.
It can be argued that all of linear algebra can be understood using the four fundamental subspaces

associated with a matrix. Because they form the foundation on which we later work, we want an explicit
method for analyzing these subspaces- That method will be the Singular Value Decomposition (SVD).

Finally, the SVD will give us the tools for performing linear regression analysis, projection analysis, and
Principle Components Analysis (PCA).

Whenever we are analyzing new data sets, we can look to the SVD and PCA as the first tools we use to
see if we can extract “features” from the data (more on that later).

4.1 Representation, Basis and Dimension

Let us quickly review some notation and basic ideas from linear algebra. First and foremost, we have to
define the vector space that we’re working with. For example, our “vectors” could be column vectors with
n elements in them. Our “vectors” could actually be matrices that are all m× n. The vector space defines
the background to which all of our other analysis takes place, so it’s an important consideration.

We will typically define our vector space V by constructing a basis for it, which is a linearly indepen-
dent and spanning set of vectors, and the dimension of V is the number of its basis vectors.

Vector Space IRn

Suppose the vector space is IRn, and let H be a subspace of IRn with basis vectors in set B. Since we’re in
IRn, we can organize these vectors as columns in a matrix B (so B would be n× k):

B = {v1,v2, . . . ,vk} , B = [v1,v2, . . . ,vk] .

Then every vector in H can be written as a linear combination of the basis vectors. That is, if x ∈ H,

x = c1v1 + . . .+ ckvk

An important observation is that the linear combination you see above can be written in matrix-vector form:

x = c1v1 + . . .+ ckvk = B[x]B (4.1)

where (c1, c2, . . . , ck)
T = [x]B is called the coordinates of x with respect to the basis B.

39

Now, consider that every vector in H can be identified with a point in IRk, and that defines a function
that we’ll call the coordinate mapping:

x =




x1

x2

...
xn


 ∈ IRn ←→ [x]B =




c1
...

ck


 ∈ IRk

If k is small (with respect to n) we think of c is the low dimensional representation of the vector x, and
that H is isomorphic to IRk (Isormorphic meaning one to one and onto linear map is the isormorphism)

Example 4.1.1. If H = span (v1,v2) where v1,2 ∈ IR5, then H is isomorphic to the plane IR2 - but is not
equal to the plane. The isomorphism is the coordinate mapping (call it F). For example, if x ∈ H, then

x = c1v1 + c2v2

and F (x) = (c1, c2) ∈ IR2.

Computing the Coordinates

Generally, finding the coordinates of x with respect to an arbitrary basis (as columns of a matrix V) means
that we have to solve the matrix equation for [x]B:

x = B[x]B.

However, if the columns of B are actually orthogonal, then it is very simple to compute the coordinates.
We’ll start with our vector equation: x = c1v1 + · · ·+ ckvk. Now take the inner product of both sides with
vj :

x · vj = c1v1 · vj + · · ·+ cjvj · vj + · · ·+ ckvk · vj

All the dot products are 0 (due to orthogonality) except for the dot product with x and vj leading to the
formula:

x · vj = 0 + 0 + . . .+ cjvj · vj + · · ·+ 0 ⇒ cj =
x · vj

vj · vj

And we remember that this is the scalar projection of x onto vj , which we’ve seen in Calc III and linear
algebra:

Projv(u) =
u · v
v · vv

Therefore, we can think of the linear combination as the following, which simplifies if we use orthonormal
basis vectors:

x = Projv1(x) + Projv2(x) + · · ·+ Projvk(x) (4.2)

= (x · v1)v1 + (x · v2)v2 + · · ·+ (x · vk)vk

IMPORTANT NOTE: In the event that x is NOT in H, then Equation 4.2 gives the (orthogonal) projection
of x into H.

The important conclusion we want to make is the following: Out of all possible bases we might choose
for a subspace of a vector space, the “best” one is one that is orthonormal, since the coordinates of a vector
are easy to compute using the inner product. In fact, if the space is a subspace of IRn and the (orthonormal)
basis is stored as the columns of a matrix B (n× k in our previous example), then the coordinates of any x
can be simply computed as:

[x]B = BTx

Of course, you might be noting that in that case,

x = B[x]B = BBTx

This matrix, BBT , is a very interesting one- One which we examine more closely in the next section.

40

Projections

Consider the following example. If a matrix U = [u1, . . . ,uk] has orthonormal columns (so if U is n × k,
then that requires k ≤ n), then UTU is k × k, and can be computed as:

UTU =




uT
1
...
uk


 [u1, . . . ,uk] =




uT
1 u1 uT

1 u2 · · · uT
1 uk

uT
2 u1 uT

2 u2 · · · uT
2 uk

...
...

uT
k u1 uT

k u2 · · · uT
k uk


 =




1 0 · · · 0
0 1 · · · 0
...

...
0 0 · · · 1


 = Ik

But UUT (which is n × n) is NOT the identity if k �= n (If k = n, then the previous computation proves
that the inverse is the transpose).

Here is a computation one might make for UUT (these are OUTER products):

UUT = [u1, . . . ,uk]




uT
1
...
uk


 = u1u

T
1 + u2u

T
2 + · · ·+ uku

T
k

Example 4.1.2. Consider the following computations:

U =

�
1
0

�
UTU = 1 UUT =

�
1 0
0 0

�

If UUT is not the identity, what is it? Consider the following computation:

UUTx = u1u
T
1 x+ u2u

T
2 x+ · · ·+ uku

T
k x

= u1(u
T
1 x) + u2(u

T
2 x) + · · ·+ uk(u

T
k x)

which we recognize as the projection of x into the space spanned by the orthonormal vectors of U . In the
previous section, we called this matrix B, but it is common notation that a matrix with orthonormal vectors
is typically denoted by U .

Just to repeat then: If we have a set of orthonormal vectors in a matrix U forming a basis for some
subspace H, then if x ∈ H,

x = U [x]U = U(UTx) = (UUT)x

However, if x is not completely contained in H, then

ProjH(x) = UUTx

And of course, if n > k and U is n× k, then UTU = I.

Notes about Programming

Programming in Matlab

• Find a random matrix with orthonormal columns

SOLUTION: Use the “QR” decomposition of a matrix A. That is, decompose matrix A as a product
of matrix Q (with orthonormal columns) times matrix R.

X=randn(9,6);

[Q,R]=qr(X,0);

Q’*Q % Should be 6 x 6 identity matrix.

41

• Take a matrix X and “normalize” it by making each column have norm 1.

SOLUTION: Find a row representing the norm of each column, then divide each row of the matrix by
that row.

X=[1,0;0,1;1,0]

RowNorms=sqrt(sum(X.*X));

C=X./RowNorms

• Let x be a random vector in IR9. We’re going to project this into the subspace spanned by the first
three columns of the matrix Q that we constructed previously.

– First, what are the coordinates? In linear algebra, the coordinates (a vector in IR3) are: QTx,
where this Q is 9× 3.

– Next, project this vector into the subspace: In linear algebra notation, QQTx

Here it is in Matlab, using the Q from the QR decomposition.

x=rand(9,1);

Coords=Q(:,1:3)’*x;

Projx=Q(:,1:3)*Coords;

Check=Q*(Q’*Projx); % Don’t compute QQ^T first!

norm(Check-Projx); %Should be close to zero

Programming in Python

• Find a random matrix with orthonormal columns.

SOLUTION: Use the “QR” decomposition of a matrix A. That is, decompose matrix A as a product
of matrix Q (with orthonormal columns) times matrix R.

A=np.random.randn(9,6)

q,r=np.linalg.qr(A)

q.shape #Answer is (9,6)

D=np.matmul(q.T,q) #Should be 6 x 6 identity

• Take a matrix X and “normalize” it by making each column have norm 1.

SOLUTION: Find a row representing the norm of each column, then divide each row of the matrix by
that row.

import numpy as np

import numpy.linalg

X=np.array([[1, 0],[0,1],[1,0]])

RowNorms=np.linalg.norm(X,axis=0)

C=X/RowNorms[np.newaxis,:]

Output:

array([[0.70710678, 0.],

[0. , 1.],

[0.70710678, 0.]])

• Let x be a random vector in IR9. We’re going to project this into the subspace spanned by the first
three columns of the matrix Q that we constructed previously.

42

– First, what are the coordinates? In linear algebra, the coordinates (a vector in IR3) are: QTx,
where this Q is 9× 3.

– Next, project this vector into the subspace: In linear algebra notation, QQTx

import numpy as np

import numpy.linalg

x=np.random.rand(9,1) #Random vector in R^9

A=np.random.rand(9,3) #We’ll go with a 3-d subspace in R^9

Q,R=np.linalg.qr(A)

Q.shape #This checks the dimensions- This is 9 x 3

Coords=np.matmul(Q.T,x) #This is a 3 x 1 vector, Q^Tx

xProjected=np.matmul(Q,Coords) #xProjected is 9 x 1

#Optional: Check by projecting the projection (shouldn’t change)

Check=np.matmul(Q,np.matmul(Q.T,xProjected))

np.linalg.norm(xProjected-Check) #Returns something like 2 x 10^(-16)

Programming in R

• Find a random matrix with orthonormal columns

SOLUTION: Use the “QR” decomposition of a matrix A. That is, decompose matrix A as a product
of matrix Q (with orthonormal columns) times matrix R.

A<-matrix(rnorm(54),nrow=9) # rnorm are random, normal dist.

X=qr(A) # X is a QR-object

Q<-qr.Q(X) # Extract the matrix Q

dim(Q) # Check dimensions on Q (returns (9,6))

H<- t(Q) %*% Q # Compute Q^TQ to get 6 x 6 identity

• Take a matrix X and “normalize” it by making each column have norm 1.

SOLUTION: Find a row representing the norm of each column, then divide each row of the matrix by
that row.

X<-matrix(c(1,1,0,0,1,0),3,2)

N<-sqrt(colSums(X^2)

C<-sweep(X,2,N,FUN=’/’)

• Let x be a random vector in IR9. We’re going to project this into the subspace spanned by the first
three columns of the matrix Q that we constructed previously.

– First, what are the coordinates? In linear algebra, the coordinates (a vector in IR3) are: QTx,
where this Q is 9× 3.

– Next, project this vector into the subspace: In linear algebra notation, QQTx

> x<-matrix(runif(9),ncol=1)

> A<-matrix(runif(27),ncol=3)

> X<-qr(A)

> Q<-qr.Q(X) #This is a bit awkward

43

> Coords<-t(Q)%*%x

> xProjected<-Q %*% Coords

> Check=Q %*% (t(Q) %*% xProjected)

> y=xProjected-Check

> sqrt(sum(y^2))

[1] 5.360492e-16

Exercises

1. Let the subspace H be formed by the span of the vectors v1,v2 given below. Given the point x1,x2

below, find which one belongs to H, and if it does, give its coordinates. (NOTE: The basis vectors are
NOT orthonormal)

v1 =




1
2

−1


 v2 =




2
−1
1


 x1 =




7
4
0


 x2 =




4
3

−1




2. Show that the plane H defined by:

H =



α1




1
1
1


+ α2




1
−1
0


 such that α1,α2 ∈ IR





is isormorphic to IR2.

3. Let the subspace G be the plane defined below, and consider the vector x, where:

G =



α1




1
3

−2


+ α2




3
−1
0


 such that α1,α2 ∈ IR



 x =




1
0
2




(a) Find the matrix (UUT in our notes) that takes an arbitrary vector and projects it (orthogonally)
to the plane G.

(b) Find the orthogonal projection of the given x onto the plane G.

(c) Find the distance from the plane G to the vector x.

4. If the low dimensional representation of a vector x is [9,−1]T and the basis vectors are [1, 0, 1]T and
[3, 1, 1]T , then what was the original vector x? (HINT: it is easy to compute it directly)

5. If the vector x = [10, 4, 2]T and the basis vectors are [1, 0, 1]T and [3, 1, 1]T , then what is the low
dimensional representation for x?

6. Let a = [−1, 3]T . Find a square matrix P so that Px is the orthogonal projection of x onto the span
of a.

7. Refer to one of the programming languages (Matlab/Python/R), and reproduce finding an arbitrary
10 × 4 matrix with orthonormal columns. Use a random x ∈ IR10, and first find the coordinates of x
with respect to the four columns in Q, then compute the orthogonal projection of x into the subspace
spanned by the first four columns of Q.

8. To prove that we have an orthogonal projection, the vector Proju(x) − x should be orthogonal to u.
Use this definition to show that our earlier formula was correct- that is,

Proju(x) =
x · u
u · uu

is the orthogonal projection of x onto u.

44

9. Continuing with the last exercise, show that UUTx is the orthogonal projection of x into the space
spanned by the columns of U by showing that (UUTx− x) is orthogonal to ui for any i = 1, 2, · · · , k.

4.2 The Four Fundamental Subspaces

Given any m× n matrix A, we consider the mapping A : IRn → IRm by:

x → Ax = y

The four subspaces allow us to completely understand the domain and range of the mapping. We will first
define them, then look at some examples.

Definition 4.2.1. The Four Fundamental Subspaces

• The row space of A is a subspace of IRn formed by taking all possible linear combinations of the rows
of A. Formally,

Row(A) =
�
x ∈ IRn |x = ATy y ∈ IRm

�

• The null space of A is a subspace of IRn formed by

Null(A) = {x ∈ IRn |Ax = 0}

• The column space of A is a subspace of IRm formed by taking all possible linear combinations of the
columns of A.

Col(A) = {y ∈ IRm | y = Ax ∈ IRn}
The column space is also the image of the mapping. Notice that Ax is simply a linear combination of
the columns of A:

Ax = x1a1 + x2a2 + · · ·+ xnan

• Finally, we define the null space of AT can be defined in the obvious way (see the Exercises).

The fundamental subspaces subdivide the domain and range of the mapping in a particularly nice way.
Below we give a “cartoon” of the relationship between the four subspaces. On the left is the domain of the
matrix mapping, and it represents IRn. On the right is the codomain, and it represents IRm. The spaces
can apparently be split into two subspaces each. In the domain, these are the Row and Null spaces. In the
codomain, these are the Column space and the null space of AT (we don’t use this one much).

45

In the diagram, notice that the axes are representing subspaces. The picture suggests that the two spaces
that split our domain and range are actually orthogonal subspaces- and that is true.

Theorem 4.2.1. Let A be an m× n matrix. Then

• The nullspace of A is orthogonal to the row space of A

• The nullspace of AT is orthogonal to the columnspace of A

Proof: We’ll prove the first statement, the second statement is almost identical to the first. To prove
the first statement, we have to show that if we take any vector x from nullspace of A and any vector y from
the row space of A, then x · y = 0.

Alternatively, if we can show that x is orthogonal to each and every row of A, then we’re done as well
(since y is a linear combination of the rows of A).

In fact, now we see a strategy: Write out what it means for x to be in the nullspace using the rows of A.
For ease of notation, let aj denote the jth row of A, which will have size 1× n. Then:

Ax = 0 ⇒




a1
a2
...

am


x =




a1x
a2x
...

amx


 = 0

Therefore, the dot product between any row of A and x is zero, so that x is orthogonal to every row of A.
Therefore, x must be orthogonal to any linear combination of the rows of A, so that x is orthogonal to the
row space of A. �

Before going further, let us recall how to construct a basis for the column space, row space and nullspace
of a matrix A. We’ll do it with a particular matrix:

Example 4.2.1. Construct a basis for the column space, row space and nullspace of the matrix A below
that is row equivalent to the matrix beside it, RREF(A):

A =




2 0 −2 2
−2 5 7 3
3 −5 −8 −2


 RREF(A) =




1 0 −1 1
0 1 1 1
0 0 0 0




The first two columns of the original matrix form a basis for the columnspace (which is a subspace of IR3):

Col(A) = span








2
−2
3


 ,




2
−2
3







A basis for the row space is found by using the row reduced rows corresponding to the pivots (and is a
subspace of IR4). You should also verify that you can find a basis for the null space of A, given below (also
a subspace of IR4). If you’re having any difficulties here, be sure to look it up in a linear algebra text:

Row(A) = span








1
0

−1
1


 ,




0
1
1
1








Null(A) = span








1
−1
1
0


 ,




−1
−1
0
1








We will often refer to the dimensions of the four subspaces. We recall that there is a term for the
dimension of the column space- That is, the rank.

Definition 4.2.2. The rank of a matrix A is the number of independent columns of A.

46

In our previous example, the rank of A is 2. Also from our example, we see that the rank is the dimension
of the column space, and that this is the same as the dimension of the row space (all three numbers correspond
to the number of pivots in the row reduced form of A). Finally, a handy theorem for counting is the following.

The Rank Theorem. Let the m× n matrix A have rank r. Then

r + dim (Null(A)) = n

This theorem says that the number of pivot columns plus the other columns (which correspond to free
variables) is equal to the total number of columns.

Example 4.2.2. The Dimensions of the Subspaces.
Given a matrix A that is m×n with rank k, then the dimensions of the four subspaces are shown below.

• dim (Row(A)) = k

• dim (Null(A)) = n− k

• dim (Col(A)) = k

• dim
�
Null(AT)

�
= m− k

There are some interesting implications of these theorems to matrices of data- For example, suppose A
is m × n. With no other information, we do not know whether we should consider this matrix as n points
in IRm, or m points in IRn. In one sense, it doesn’t matter! The theorems we’ve discussed shows that the
dimension of the columnspace is equal to the dimension of the rowspace. Later on, we’ll find out that if
we can find a basis for the columnspace, it is easy to find a basis for the rowspace. We’ll need some more
machinery first.

4.3 Exercises

In the exercises below, recall that the usual norm for a vector is the Euclidean norm, or the 2−norm, which
is defined as:

�x� =
�
x1
1 + x2

2 + · · ·x2
n =

√
xTx

1. Show that Null(AT) ⊥ Col(A). Hint: You may use what we already proved.

2. If A is m× n, how big can the rank of A possibly be?

3. Show that multiplication by an orthogonal matrix preserves lengths: �Qx�2 = �x�2 (Hint: Use prop-
erties of inner products). Conclude that multiplication by Q represents a rigid rotation.

4. Prove the Pythagorean Theorem by induction: Given a set of n orthogonal vectors {xi}

�
n�

i=1

xi�2 =
n�

i=1

�xi�2

The case where n = 1 is trivial, so you might look at n = 2 first. Try starting with

�x+ y�2 = (x+ y)T (x+ y) = · · ·

and then simplify to get �x�2 + �y�2. Now try the induction step on your own.

5. Let A be an m × n matrix where m > n, and let A have rank n. Let y, ŷ ∈ IRm, such that ŷ
is the orthogonal projection of y onto the column space of A. We want a formula for the matrix
P : IRm → IRm so that Py = ŷ.

The following image shows the relevant subspaces:

47

(a) Why is the projector not P = AAT ?

(b) Since ŷ − y is orthogonal to the column space of A, show that

AT (ŷ − y) = 0 (4.3)

(c) Show that there exists x ∈ IRn so that Equation (4.3) can be written as:

AT (Ax− y) = 0 (4.4)

(d) Argue that ATA (which is n× n) is invertible, so that Equation (4.4) implies that

x =
�
ATA

�−1
ATy

(e) Finally, show that this implies that

P = A
�
ATA

�−1
AT

Note: If A has rank k �= n, then we will need something different, since ATA will not be full rank.
The missing piece is the singular value decomposition, to be discussed later.

6. The Orthogonal Decomposition Theorem: if x ∈ IRn and W is a (non-zero) subspace of IRn, then x
can be written uniquely as

x = w + z

where w ∈ W and z ∈ W⊥.

To prove this, let {ui}pi=1 be an orthonormal basis for W , define w = (x · u1)u1 + . . . + (x · up)up,
and define z = x−w. Then:

(a) Show that z ∈ W⊥ by showing that it is orthogonal to every ui.

(b) To show that the decomposition is unique, suppose it is not. That is, there are two decompositions:

x = w1 + z1, x = w2 + z2

Show this implies that w1−w2 = z2−z1, and that this vector is in both W and W⊥. What can
we conclude from this?

7. Use the previous exercises to prove the The Best Approximation Theorem If W is a subspace of
IRn and x ∈ IRn, then the point closest to x in W is the orthogonal projection of x into W .

48

4.4 The Decomposition Theorems

The matrix factorization that arises from an eigenvector/eigenvalue decomposition is useful in many appli-
cations, so we’ll briefly review it here and build from it until we get to our main goal, the Singular Value
Decomposition.

4.4.1 The Eigenvector/Eigenvalue Decomposition

First we have a basic definition:

Let A be an n× n matrix. If there exists a scalar λ and non-zero vector v so that

Av = λv

then we say that λ is an eigenvalue and v is an associated eigenvector.

An equivalent formulation of the problem is to solve Av − v = 0, or, factoring v out,

(A− λI)v = 0

This equation always has the zero solution (letting v = 0), however, we need to have non-trivial solutions,
and the only way that will happen is if A− λI is non-invertible, or equivalently,

det(A− λI) = 0

which, when multiplied out, is a polynomial equation in λ that is called the characteristic equation.

Therefore, we find the eigenvalues first, then for each λ, there is an associated subspace- The null space
of A− λI, or the eigenspace associated with λ, denoted by Eλ.

The way to finish the problem is to give a “nice” basis for the eigenspace- If you’re working by hand, try
one with integer values. If you’re on the computer, it is often convenient to make them unit vectors.

Some vocabulary associated with eigenvalues: Solving the characteristic equation will mean that we can
have repeated solutions. The number of repetitions is the algebraic multiplicity of λ. On the other hand, for
each λ, we find the eigenspace which will have a certain dimension- The dimension of the eigenspace is the
geometric multiplicity of λ.

Examples:

1. Compute the eigenvalues and eigenvectors for the 2× 2 identity matrix.

SOLUTION: The eigenvalue is 1 (a double root), so the algebraic multiplicity of 1 is 2.

On the other hand, if we take A− λI, we simply get the zero matrix, which implies that every vector
in IR2 is an eigenvector. Therefore, we can take any basis of IR2 is a basis for E1, and the geometric
multiplicity is 2.

2. Consider the matrix �
1 2
0 1

�

Again, the eigenvalue 1 is a double eigenvalue (so the algebraic multiplicity is 2), but solving (A−λI)v =
0 gives us:

2v2 = 0 ⇒ v2 = 0

That means v1 is free, and the basis for E1 is [1, 0]T . Therefore, the algebraic multiplicity is 1.

49

Definition: A matrix for which the algebraic and geometric multiplicities are not equal is called defective.

There is a nice theorem relating eigenvalues:

Theorem: If X is square and invertible, then A and X−1AX have the same eigenvalues.

Sometimes this method of characterizing eigenvalues in terms of the determinant and trace of a matrix:

det(A) = Πn
i=1λi trace(A) =

∞�

i=1

λi

Symmetric Matrices and the Spectral Theorem

There are some difficulties working with eigenvalues and eigenvectors of a general matrix. For one thing,
they are only defined for square matrices, and even when they are defined, we may get real or complex
eigenvalues.

If a matrix is symmetric, beautiful things happen with the eigenvalues and eigenvectors, and it is sum-
marized below in the Spectral Theorem.

The Spectral Theorem: If A is an n× n symmetric matrix, then:

1. A has n real eigenvalues (counting multiplicity).

2. For each distinct λ, the algebraic and geometric multiplicities are the same.

3. The eigenspaces are mutually orthogonal- both for distinct eigenvalues, and we’ll take each Eλ to have
an orthonormal basis.

4. A is orthogonally diagonalizeable, with D = diag(λ1,λ2, . . . ,λn). That is, if V is the matrix whose
columns are the (othornormal) eigenvectors of A, then

A = V DV T

Some remarks about the Spectral Theorem:

• If a matrix is real and symmetric, the Spectral Theorem says that its eigenvectors form an orthonormal
basis for IRn.

• The first part is somewhat difficult to prove in that we would have to bring in more machinery than
we would like. If you would like to see a proof, it comes from the Schur Decomposition, which is given,
for example, in “Matrix Computations” by Golub and Van Loan.

The following is a proof of the third part. Supply justification for each step: Let v1, v2 be eigenvectors
from distinct eigenvalues, λ1,λ2. We show that v1 · v2 = 0:

λ1v1 · v2 = (Av1)
Tv2 = vT

1 A
Tv2 = vT

1 Av2 = λ2v1 · v2

Now, (λ1 − λ2)v1 · v2 = 0.

The Spectral Decomposition: Since A is orthogonally diagonalizable, then

A = (q1 q2 . . . qn)




λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λn







qT
1

qT
2
...
qT
n




50

so that:

A = (λ1q1 λ2q2 . . . λnqn)




qT
1

qT
2
...
qT
n




so finally:
A = λ1q1q

T
1 + λ2q2q

T
2 + . . .+ λnqnq

T
n

That is, A is a sum of n rank one matrices, each of which is a projection matrix.

Exercises

1. Prove that if X is invertible and matrix A is square, then A and X−1AX have the same eigenvalues.

2. Programming Exercise: Verify the spectral decomposition for a symmetric matrix. Here are ex-
amples in Matlab, Python and R. First, we’ll construct a random symmetric 6× 6 matrix, then we’ll
compute the eigenvalues and eigenvectors.

• Matlab:

%Construct a random, symmetric, 6 x 6 matrix:

N=6;

Atemp=rand(N,N);

A=(Atemp+Atemp’)/2; %A is symmetric

%Compute the eigenvalues of A:

[Q,L]=eig(A); %NOTE: A = Q L Q’

%L is a diagonal matrix

%Now form the "spectral sum"

S=zeros(6,6);

for i=1:6

S=S+L(i,i)*Q(:,i)*Q(:,i)’;

end

max(max(S-A))

Note that the maximum of S−A should be a very small number! (By the spectral decomposition
theorem).

• Python:

import numpy as np

import numpy.linalg

N=6;

Atemp=np.random.rand(N,N)

A=(Atemp+Atemp.T)/2 #Makes A symmetric

D,V=numpy.linalg.eig(A)

S=np.zeros((6,6))

for i in range(0,6):

S=S+D[i]*np.outer(V[:,i],V[:,i])

51

print(numpy.linalg.norm(A-S,’fro’))

• R:

A<-matrix(runif(36),ncol=6)

A<-(A+t(A))/2 #Makes A symmetric

P<-eigen(A) #Creates a structure holding info

D<-P$values

V<-P$vectors

S=matrix(0,nrow=6,ncol=6)

for (i in 1:6){

S=S+D[i]*(V[,i] %*% t(V[,i]))

}

print(norm(A-S,"F"))

4.4.2 The Singular Value Decomposition

There is a special matrix factorization that is extremely useful, both in applications and in proving theorems.
This is mainly due to two facts, which we shall investigate in this section: (1) We can use this factorization
on any matrix, (2) The factorization defines explicitly the rank of the matrix, and gives orthonormal bases
for all four fundamental subspaces of A.

In what follows, assume that A is an m×n matrix (so A maps IRn to IRm and is not necessarily square).
We’ll build the factorization by using the Spectral Theorem twice.

Step 1. Although A itself is not symmetric, ATA is n × n and symmetric, so the Spectral Theorem applies,
and we define an n× n orthonormal matrix V and diagonal matrix D1 (with eigenvalues λ along the
diagonal): using that theorem:

ATA = V DV T

We will assume that the eigenvalues are ordered from largest to smallest.

Step 2. Similarly, the m × m matrix AAT is also symmetric, and so applying the Spectral Theorem again
defines an m×m orthonormal matrix U and diagonal matrix D2 such that

AAT = UD2U
T

We will assume that the eigenvalues are ordered from largest to smallest.

Step 3. Later, we will show that the non-zero diagonal elements of D1 and D2 are identical. Assuming the
rank of A to be k, we’ll define the singular values of A as:

σi =

� √
λi if 1 ≤ i ≤ k
0 for the remaining values

where λi is the ith diagonal element of D1 or D2. The m × n matrix Σ is defined to be the m × n
diagonal matrix with singular values along the diagonal (ordered from largest to smallest).

Theorem The Singular Value Decomposition (SVD) Let A be any m× n matrix of rank k. Then we can
factor the matrix A as the following product:

A = UΣV T

where U is an orthogonal m×m matrix, Σ is a diagonal m× n matrix, and V is an orthogonal n× n
matrix. The columns of U are called the left singular vectors and the columns of V are called the right
singular vectors. Further, there are exactly k non-zero singular values of A.

52

Before we get to the exercises, there is a different way of expressing the SVD that is similar to our spectral
decomposition. Recall that the rank is k:

A = UΣV T = σ1u1v
T
1 + σ2u2v

T
2 + · · ·+ σkukv

T
k

Please note that this is a sum of k matrices, not scalars- That is, we’re computing outer products, σiuiv
T
i

is an m× n matrix.

4.5 Exercises

In the exercises below, we’ll look more closely at the SVD and the relationships between the vectors in U and
V . As you’re working through these, be sure to keep in mind the dimensions of the objects you’re working
with.

For all of the exercises, assume that A is m× n with rank k, and the SVD of A is UΣV T .

1. Show that if λ is an eigenvalue of ATA, then λ is also an eigenvalue of AAT .

Hint: If λ is an eigenvalue of ATA with eigenvector v, then ATAv = λv. Now what equation must be
true if λ is an eigenvalue of AAT ?

2. There is a beautiful relationship between the column vectors of U and V . We will assume that A is
m× n with rank k, and A = UΣV T is the SVD of A. Then:

Avi = σiui and ATui = σivi

NOTE: The importance of this is that, if you know the left singular vectors, then you can compute the
right singular vectors.

HINT: You might start with Avi, then recall that A = UΣV T , which can be written as a sum of k
matrices. The proof of the second equation is similar.

3. We said that σi =
√
λi. Here we prove that λi ≥ 0, so that the singular values are always real:

Show that λi ≥ 0 for i = 1..n by showing that �Avi�2 = λi. HINT: As a starting point, you might
rewrite

�Avi�2 = (Av)TAv

4. Prove that, if vi and vj are distinct eigenvectors of ATA, then their corresponding images, Avi and
Avj , are orthogonal.

5. Prove that, if x = α1v1 + . . .αnvn, then �Ax�2 = α2
1λ1 + . . . + α2

nλn. (You might check the hint in
#3).

6. Let W be the subspace generated by the basis {vj}nj=k+1, where vj are the eigenvectors associated

with the zero eigenvalues of ATA (therefore, we are assuming that the first k eigenvalues are NOT
zero). Show that W = Null(A).

Hint: To show this, take an arbitrary vector x from W . Rather than showing directly that Ax = 0,
instead show that the magnitude of Ax is zero. We also need to show that if we take any vector from
the nullspace of A, then it is also in W .

7. Prove that if the rank of ATA is r, then so is the rank of A.

Hint: How does the previous exercise help?

8. Compute the SVD by hand of the following matrices:

A1 =

�
1 1
0 0

�
A2 =




0 2
0 0
0 0




(Hint: ATA and AAT are symmetric matrices.)

53

Figure 4.1: The SVD of A ([U,S,V]=svd(A)) completely and explicitly describes the 4 fundamental subspaces
associated with the matrix, as shown. We have a one to one correspondence between the rowspace and
columnspace of A, the remaining v’s map to zero, and the remaining u’s map to zero (under AT).

4.6 Notes about the SVD

The SVD computes a basis for all 4 fundamental subspaces for matrix A. To be more specific, let A = UΣV T

be the SVD which has rank k. Be sure that the singular values are ordered from highest to lowest. Then:

1. A basis for the columnspace of A, Col(A) is {ui}ki=1

2. A basis for nullspace of A, Null(A) is {vi}ni=k+1

3. A basis for the rowspace of A, Row(A) is {vi}ki=1

4. A basis for the nullspace of AT , Null(AT) is {ui}mi=k+1

Those are the basis vectors, but does σi also have some geometric interpretation? Yes- Recall that
Avi = σiui. Therefore, we can think of each σi as either a stretching or contraction factor along each vi

(which turns into ui.
The SVD is one of the premier tools of linear algebra primarily because it allows us to completely reveal

everything we need to know about a matrix mapping: The rank, the basis of the nullspace, a basis for the
column space, the basis for the nullspace of AT , and of the row space. See Figure 4.1.

Lastly remembering that matrix multiplication is function composition, and multiplication by an orthog-
onal matrix represents a “rotation”, the SVD provides a means of decomposing any linear mapping into two
“rotations” and a scaling. This will become important later when we try to deduce a mapping matrix from
data.

4.6.1 The Reduced (or “economy-size”) SVD

If you have a matrix A that is 50000× 3, you should NOT ask for the complete SVD decomposition unless
you really, really mean it.

Why? Think about the sizes of your matrices- The matrix U would be 50000 × 50000, which is very
large, and most of which is not needed. Indeed, the rank of your matrix is at most 3, so there are only at
most three columns of your matrix that are really needed (unless again, you specifically require the basis for

54

the nullspace of AT). Instead, what you want to compute is called the Reduced SVD (or the economy-size
SVD).

Definition: The Reduced SVD

Let A be m× n with rank k. Then we can write:

A = �U �Σ�V T

where Ũ is an m×k matrix with orthogonal columns, Σ̃ is an k×k square matrix, and Ṽ is an n×k matrix.

Most of the time we’ll only need the reduced SVD- The only difference is that we’re stripping away the
two nullspaces from the set of four fundamental subspaces. We’ll see an example comparing the full with
the reduced SVD below.

Remarks on some language: The reader will see several ways of referring to the “non-full” SVD.
For example, there is reduced SVD, truncated SVD, and thin SVD to name three. I typically refer to the
reduced SVD by using the rank of the matrix k to define matrix sizes (as above). If m > n, and we use n to
define the sizes, then the decomposition is referred to as the “thin SVD” (Golub and Van Loan). However,
computer software rarely will compute the rank of the matrix unless requested, so they actually compute
the thin SVD, but will refer to it as the reduced SVD. The moral of the story is to be sure you know which
version it is that you’re using!

4.7 Programming with the SVD

Here, we’ll perform some computations with a small, 5 × 3 matrix to illustrate some of the formulas we’ve
been working with. We’ll make the matrix have rank 2, then we’ll compare the full and reduced SVD
formulas. For this example, we’ll take

A =




−1 2 4
1 0 −2
0 1 1
1 3 1
1 2 0




Now, the full SVD would look like UΣV T , where U,Σ, and V are below (resp):




0.78 0.35 −0.38 −0.35 −0.06
−0.28 −0.45 −0.82 −0.19 −0.03
0.25 −0.05 −0.23 0.63 0.69
0.46 −0.60 0.11 0.38 −0.52
0.21 −0.55 0.34 −0.54 0.49







5.68 0 0
0 3.42 0
0 0 0
0 0 0
0 0 0







−0.07 −0.57 −0.82
0.63 −0.66 0.41
0.77 0.49 −0.41




The reduced SVD would strip away the nullspaces, leaving us with Ũ , Σ̃, Ṽ below (resp):




0.78 0.35
−0.28 −0.45
0.25 −0.05
0.46 −0.60
0.21 −0.55




�
5.68 0

0 3.42

�


−0.07 −0.57
0.63 −0.66
0.77 0.49




Secondly, let’s look at the decomposition we discussed a few pages ago. That was:

A = σ1u1v
T
1 + σ2u2v

T
2 + · · ·+ σkukv

T
k

In our case, k = 2, and we’ll compute this using our three computer languages as a check.

55

Matlab and the SVD

The full command is [U,S,V]=svd(A), where A = USV T . For the reduced SVD, add a zero in the list of
arguments, [U,S,V]=svd(A,0). Then here’s the script using our example matrix A:

A=[-1 2 4;1 0 -2;0 1 1;1 3 1;1 2 0];

[U,S,V]=svd(A);

Temp=S(1,1)*U(:,1)*V(:,1)’+S(2,2)*U(:,2)*V(:,2)’;

norm(A-Temp,’fro’)

% We could compute "Temp" as:

Temp2=U(:,1:2)*S(1:2,1:2)*V(:,1:2)’;

norm(A-Temp2,’fro’)

Side note: The ’fro’ part of the norm is short for “Frobenius”. The Frobenius norm of a matrix is like
treating the whole matrix as one big vector, then applying the Euclidean norm. That is, take every element,
square it, then sum those and take the square root of the result.

Python and the SVD

Quick note: After working with Python and matrices for a bit, I see that in Python 3.5 and later, the @

symbol is used for matrix multiplication, so I’ll use that below rather than np.matmul.
As a side note, if we want columns indexed as i to j from array A, use the notation A[:,i:j+1]. So the

first two columns would be A[:,0:2], where columns 0 and 1 are extracted.

import numpy as np

A=np.array([[-1,2,4],[1,0,-2],[0,1,1],[1,3,1],[1,2,0]])

U,S,VT=np.linalg.svd(A,full_matrices=0)

Temp=S[0]*U[:,:1] @ VT[:1,:] + S[1]*U[:,1:2] @ VT[1:2,:]

We could compute Temp as:

Temp2=U[:,0:2] @ np.diag(S[:2]) @ VT[0:2,:]

R and the SVD

A<-cbind(c(-1,1,0,1,1),c(2,0,1,3,2),c(4,-2,1,1,0))

A.svd<-svd(A) #Creates a structure holding info

U<-A.svd$u

D<-A.svd$d #Note that R uses UDV^T instead of USV^T

V<-A.svd$v

Temp<-D[1] * U[,1] %*% t(V[,1]) + D[2]* U[,2] %*% t(V[,2])

norm(A-Temp)

Temp2<-U[,1:2] %*% diag(D[1:2]) %*% t(V[,1:2])

norm(A-Temp2)

Next, we’ll be looking at two applications- One in image processing, and one in computing a generalized
inverse.

Generalized Inverses

Let a matrix A be m × n with rank r. In the general case, A does not have an inverse. Is there a way of
restricting the domain and range of the mapping y = Ax so that the map is invertible?

We know that the columnspace and rowspace of A have the same dimensions. Therefore, there exists a
1-1 and onto map between these spaces, and this is our restriction.

56

To “solve” y = Ax, we replace y by its orthogonal projection to the columnspace of A, ŷ. This gives
the least squares solution, which makes the problem solvable. To get a unique solution, we replace x by its
projection to the rowspace of A, x̂. The problem

ŷ = Ax̂

now has a solution, and that solution is unique. We can rewrite this problem now in terms of the reduced
SVD of A:

x̂ = V V Tx, ŷ = UUTy

Now we can write:

UUTy = UΣV T
�
V V Tx

�

so that

V Σ−1UTy = V V Tx

(Exercise: Verify that these computations are correct!)
Given an m× n matrix A, define its pseudoinverse, A† by:

A† = V Σ−1UT

We have shown that the least squares solution to y = Ax is given by:

x̂ = A†y

where x̂ is in the rowspace of A, and its image, Ax̂ is the projection of y into the columnspace of A.
Geometrically, we can understand these computations in terms of the four fundamental subspaces.

✲

✻

✲

✻

IRn IRm

✲Ax = y

� y

Row(A)

Null(A)

Col(A)

Null(AT)

In this case, there is no value of x ∈ IRn which will map onto y, since y is outside the columnspace of A.
To get a solution, we project y onto the columnspace of A as shown below:

✲

✻

✲

✻

� yŷ = UUTy

Row(A)

Null(A)

Col(A)

Null(AT)

Now it is possible to find an x that will map onto ŷ, but if the nullspace of A is nontrivial, then all of
the points on the dotted line will also map to ŷ

57

✲

✻

✲

✻

� yŷ

�x̂ = V V Tx �x
Row(A)

Null(A)

Col(A)

Null(AT)

Finally, we must choose a unique value of x for the mapping- We choose the x inside the rowspace of A.
This is a very useful idea, and it is one we will explore in more detail later. For now, notice that to get

this solution, we analyzed our four fundamental subspaces in terms of the basis vectors given by the SVD.

Exercises

1. Consider �
2 1 −1
3 1 2

�


x1

x2

x3


 =

�
5
1

�

(a) Before solving this problem, what are the dimensions of the four fundamental subspaces?

(b) Use Matlab to compute the SVD of the matrix A, and solve the problem by computing the
pseudoinverse of A directly.

(c) Check your answer explicitly and verify that x̂ and ŷ are in the rowspace and columnspace. (Hint:
If a vector x is already in the rowspace, what is V V Tx?)

2. Consider 


2 1 −1 3
−1 0 1 −2
7 2 −5 12

−3 −2 0 −4
4 1 −3 7







x1

x2

x3

x4


 =




5
1
0

−2
6




(a) Find the dimensions of the four fundamental subspaces by using the SVD of A (in Matlab, Python
or R).

(b) Solve the problem.

(c) Check your answer explicitly and verify that x̂ and ŷ are in the rowspace and columnspace.

58

