
Continuing Notes on Ch 8 (Selected topics from 8.3, 8.5, 8.6)

Numerically Solving an IVP

The setup to the problem we consider in Chapter 8 is the following: Given a first order differential equation:

dy

dt
= f(t, y), y(t0) = y0,

we want to provide a numerical approximation to the solution, φ(t), on some interval of time, where the end
of the time interval is known (given) as tf .

So far, we have Euler’s method (Euler’s forward method actually), and then we have two modifications
of that: Backwards Euler and Improved Euler (8.2).

These are given by the following rules. Recall yn = y(tn).

• Forward Euler:

yn+1 = yn + h · f(tn, yn)

• Backward Euler:

k1 = f(tn, yn)

yn+1 = yn + h · f(tn+1, yn + h · k1)

• Improved Euler:

k1 = f(tn, yn)

k2 = f(tn+1, yn + h · k1)

yn+1 = yn + h · k1 + k2
2

Numerical Error

• Round off error:

Caused by using a discrete number of significant digits to represent real numbers on a computer. Since
computers can retain a large number of digits in a computation, round-off error comes into play when
we do things that can result in a big loss of significant digits- A classic example of that is when we
subtract two nearly equal numbers. Notice that this can happen in DEs if the step size is too small.

Therefore, even though we said that error decreases with step size, you can take this too far!

Typically, we don’t study the round off error given in an algorithm- rather, we focus on the truncation
error.

• Local Truncation Error: The error caused by one step of the algorithm.

• Global Truncation Error: The cumulative error caused by many iterations. The numerical method is
convergent if global truncation error goes to zero as the step size goes to zero.

Error in Euler’s Method

Let y′(t) = f(t, y), y(t0) = y0 be a given IVP. Define y1 as the computed output of Euler’s method after one
time step:

y1 = y(t0) + hf(t0, y0)

1



If we expand the exact solution y(t) using Taylor series based at t0, then

y(t0 + h) = y(t0) + hy′(t0) +
h2

2
y′′(t0) +O(h3)

The first two terms of that expansion are actually what we called y1, so we write:

y(t0 + h) = y1 +
h2

2
y′′(t0) +O(h3)

So we see that the local truncation error, if the third derivative is bounded, is given by

y(t0 + h)− y1 =
h2

2
y′′(t0) +O(h3)

We can be more precise using the Lagrange form for the remainder. That is, if y has a continuous second
derivative, there exists ξ ∈ [t0, t0 + h] such that

y(t0 + h)− y1 =
1

2
h2y′′(ξ).

From this, we say that the local truncation error is approximately proportional to h2.
It can be shown that the global truncation error for Euler’s method is proportional to h.

The Runge-Kutta Method

In the Runge-Kutta method, we will be taking sample function evaluations of our derivative, f(t, y) at four
sample points in the interval [tn, tn+1] rather than our last modification of Euler’s method, which took two
samples at the endpoints.

Therefore, given y′ = f(t, y) with y(t0) = y0 and step size h, we’ll define

k1 = f(tn, yn), k2 = f

(
tn +

1

2
h, yn +

1

2
h · k1

)

k3 = f

(
tn +

1

2
h, yn +

1

2
h · k2

)
, k4 = f(tn + h, yn + h · k3)

Then the step we take is given by:

yn+1 = yn + h ·
(
k1 + 2k2 + 2k3 + k4

6

)
It can be shown that the local truncation error is proportional to h5, and the global truncation error is

at most a constant times h4. We call this method a fourth order DE solver.

Getting ready to use the solvers

You might have noticed that all the solvers so far have been designed to solve the first order differential
equation:

y′ = f(t, y), y(t0) = y0

In fact, we don’t have higher order DE solvers, because as it turns out, we can convert all other DEs to this
form.

2



First Order Systems

We’ll need to change our notation slightly for a first order system of differential equations:

y′ = F(t, y)

Then all of our methods work exactly the same as before- The one-dimensional versions we have already
defined are employed on each dimension independently.

For example, suppose
y′1 = y1 + y2 + t

y′2 = y1y2 + cos(t)
y1(0) = 1
y2(0) = 2

Then apply Euler’s Method with h = 0.1.
SOLUTION: We start at the vector (1, 2), and computing the derivatives:

y′1(0) = y1(0) + y2(0) + 0 = 1 + 2 = 3
y′2(0) = y1(0)y2(0) + cos(0) = 2 + 1 = 3

Now,
y1(0.1) = 1 + (0.1)3 = 1.3
y2(0.1) = 2 + (0.1)3 = 2.3

And so on. In fact, since we should write the derivative functions as if they are taking in vectors, the
Matlab/Octave code will remain unchanged whether we have the scalar equation or a system of equations.

Convert nth order DE to first order system

To solve an nth order differential equation, we have to first convert it to a system of first order. We do that
by introducing “dummy” variables. For example, convert the following third order DE to a system of first
order:

y′′′ − yy′ = 3y′′ + cos(t)

SOLUTION: Let x1 = y, x2 = y′, x3 = y′′. Then we want to find expressions for x′1, x
′
2, x

′
3 (be sure to go in

order).
x′1 = x2
x′2 = x3
x′3 = x1x2 + 3x3 + cos(t)

Then remember that we don’t need x2, x3 for the solution- The original solution y was just x1.

Homework

The homework will consist of two parts- One is to get all of your code together for the four different algorithms
(Forward Euler, Backward Euler, Improved Euler, Runge-Kutta), and then we’ll be numerically solving some
differential equations and some systems of differential equations.

I will have the code for the three Euler algorithms available for you to use in a “bucket” in Octave-online,
so feel free to use that as a starting point.

1. Using the Euler algorithms as a template, write the code for Runge-Kutta (and name the function
runge_kutta.m ).

2. Solve the differential equations in #1, 5, 8 in 8.6 (pg 483), except first use h = 0.01, then use h = 0.005
to estimate the solution at t = 1. Use Euler’s method, then Runge-Kutta. Comment on what you see-
Can you estimate how accurate your solutions are from these numbers? (I’m not looking for a single
answer here- just a short discussion).

3



3. Read over the help file for the built-in Octave/Matlab function ode23, and use it to solve the three
differential equations from the previous problem (we’re only comparing the solutions at time t = 1).
Comment on the accuracy. To help you get started, here is a sample piece of code that will solve
y′ = 2t, y(0) = 1, on the interval [0, 2]. As a side note, we plot the points and you might note that the
step size is not constant.

f=@(t,y) 2*t;

y0=1; t0=0; tf=2;

[t,y]=ode23(f, [t0, tf], y0);

plot(t,y,’o-’)

Appendix I: Code

Euler’s Method, Matlab/Octave Code

function [t,y]=euler_forward(f,tinit,yinit,tfin,h)

% INPUT: Function f(t,y) for y’, initial time, initial position, final time

% and stepsize.

% OUTPUT: Vectors containing the times and approximate solution to y’=f(t,y)

t=tinit:h:tfin;

n=length(t);

y=zeros(1,n); %Good practice to pre-define the vector.

y(1)=yinit;

for i=1:n-1

y(i+1)=y(i)+h*f(t(i),y(i));

end

Code for Backwards Euler

function [t,y]=euler_backward(f,tinit,yinit,tfin,h)

% INPUT: Function f(t,y) for y’, initial time, initial position, final time

% and stepsize.

% OUTPUT: Vectors containing the times and approximate solution to y’=f(t,y)

t=tinit:h:tfin;

n=length(t);

y=zeros(1,n); %Good practice to pre-define the vector.

y(1)=yinit;

for i=1:n-1

k1=f(t(i),y(i));

y(i+1)=y(i)+h*f(t(i),y(i)+h*k1);

end

Code for Improved Euler

function [t,y]=euler_improved(f,tinit,yinit,tfin,h)

% INPUT: Function f(t,y) for y’, initial time, initial position, final time

% and stepsize.

% OUTPUT: Vectors containing the times and approximate solution to y’=f(t,y)

4



t=tinit:h:tfin;

n=length(t);

y=zeros(1,n); %Good practice to pre-define the vector.

y(1)=yinit;

for i=1:n-1

k1=f(t(i),y(i));

k2=f(t(i+1),y(i)+h*k1);

y(i+1)=y(i)+(h/2)*(k1+k2);

end

Appendix II: Examples

Example 1:

Solve y′ = (t2 − y2) sin(y), y(0) = −1 on the interval 0 ≤ t ≤ 1 using a step size of h = 0.1.
First, we need to understand how to pass the function into the algorithm. There are two primary methods

we’ll use. One is by using an in-line function, the other is to use an m−file.

• Method 1: In-line for short functions.

f=@(t,y) (t.^2-y.^2).*sin(y)

t0=0; y0=-1; tf=1; h=0.1;

[t,y]=euler_forward(f,t0,y0,tf,h);

• Method 2: M-file for more complicated derivatives.

In Matlab, type and save the m−file as myfunc.m (note: always save a function using its function
name!)

function dy=myfunc(t,y)

dy=(t.^2-y.^2).*sin(y)

Now in Matlab, we would type:

t0=0; y0=-1; tf=1; h=0.1;

[t,y]=euler_forward(@myfunc,t0,y0,tf,h);

Side Remark: It is possible to put functions below a script file in Matlab, but may not be possible in
Octave (it wasn’t possible in older versions of Matlab).

Example 2:

In this example, we’ll take a look at the differences between a numerical approximation to a solution, and
the solution itself. We’ll also look at a plot of the two functions.

Solve y′ = 2y with y(0) = 1
2 , and consider 0 ≤ t ≤ 2 with step size 0.1. Compare the numerical solution

using Backwards Euler with the actual solution, y(t) = 1
2e2t, graphically.

SOLUTION: We’ll need two functions this time- We need the function for the derivative and the function
for the actual solution. We’ll then call the Backwards Euler routine we defined previously and compute the
plots.

5



f1=@(t,y) 2*y;

f2=@(t,y) 0.5*exp(2*t);

t0=0; y0=0.5; tf=2; h=0.1;

t=t0:h:tf;

N=length(t);

y=zeros(1,N);

phi=f2(t);

[t,y]=euler_backward(f1,t0,y0,tf,h);

plot(t,y,’ro-’,t,phi,’k-’);

%Plot the error and find a "line of best fit"

ErrLog1=log(abs(y-phi));

p1=polyfit(t(2:end),ErrLog1(2:end),1);

L1=p1(1)*t+p1(2);

plot(t,ErrLog1,’ro-’,t,L1,’k-’);

6


