
Notes on 8.1-8.2, Boyce and Diprima text.

Numerically Solving an IVP

The setup to the problem we consider in Chapter 8 is the following: Given a first order
differential equation:

dy

dt
= f(t, y), y(t0) = y0,

we want to provide a numerical approximation to the solution, φ(t), on some interval of time,
where the end of the time interval is known (given) as tf .

We proceed by subdividing time, so the nu-
merical routine outputs a vector of time values
and a vector of solution values at those points
in time.
Before considering the global problem, let us
consider a single time step from time tn to tn+1,
as shown below.

A First Approximation

The simplest thing we might do is to assume that the slope, f(tn, yn), stays constant in the
interval from tn to tn+1. This gives a tangent line approximation to the solution, and we
find that, by defining h = ∆t as the time step (presumed constant),

yn+1 = yn + hf(tn, yn)

From here, we can define the algorithm:

Euler’s Method, Matlab/Octave Code

function [t,y]=euler_forward(f,tinit,yinit,tfin,h)

% INPUT: Function f(t,y) for y’, initial time, initial position, final time

% and stepsize.

% OUTPUT: Vectors containing the times and approximate solution to y’=f(t,y)

t=tinit:h:tfin;

n=length(t);

y=zeros(1,n); %Good practice to pre-define the vector.

y(1)=yinit;

1



for i=1:n-1

y(i+1)=y(i)+h*f(t(i),y(i));

end

Example Using Euler’s Method

In this example, we’ll try solving y′ = (t2 − y2) sin(y), y(0) = −1 on the interval 0 ≤ t ≤ 1
using a step size of h = 0.1.

First, we need to understand how to pass the function into the algorithm. There are two
primary methods we’ll use. One is by using an in-line function, the other is to use an m−file.

• Method 1: In-line for short functions.

f=@(t,y) (t.^2-y.^2).*sin(y)

t0=0; y0=-1; tf=1; h=0.1;

[t,y]=euler_forward(f,t0,y0,tf,h);

• Method 2: M-file for more complicated derivatives.

In Matlab, type and save the m−file as myfunc.m (note: always save a function using
its function name!)

function dy=myfunc(t,y)

dy=(t.^2-y.^2).*sin(y)

Now in Matlab, we would type:

t0=0; y0=-1; tf=1; h=0.1;

[t,y]=euler_forward(@myfunc,t0,y0,tf,h);

Side Remark: It is possible to put functions below a script file in Matlab, but may not
be possible in Octave (it wasn’t possible in older versions of Matlab).

An alternative: Backwards Euler

In the backwards Euler method, the slope we use for the linear approximation is taken from
the end of the interval rather than from the beginning. This yields:

yn+1 = yn + h(f(tn+1, yn+1)

This is an example of an implicit method, because we note that yn+1 appears on both sides
of the equation. The success of this approach depends on whether or not we have a good
way of solving this equation for yn+1. Here we’ll look at three approaches:

2



• Method 1: We can solve the equation algebraically.

As an example, supppose that y′ = t+ y. Then backwards Euler becomes:

yn+1 = yn + h(tn+1 + yn+1) ⇒ yn+1 =
yn + htn+1

1− h

• Method 2: Approximate yn+1 using Euler.

In this case, we’ll have:

yn+1 = yn + hf(tn+1, yn+1) ≈ yn + hf(tn+1, yn + hf(tn, yn))

• Method 3: Use a nonlinear (built-in) solver.

To use a nonlinear solver, we will typically have to translate our problem to a single
function, like G(z) = 0, and then the solver will solve for z. In our case, the equation
we have is given by:

yn+1 = yn + h f(tn+1, yn+1)

where everything is a known quantity except for yn+1, which we’ll call z. Then we
write function G as:

G(z) = z − yn − h f(tn+1, z)

and “plug it in” to the solver. This takes some effort, and will probably be very slow to
compute, especially in comparison to our other methods. The hope is that it produces
a much more accurate algorithm.

More Accuracy? Improved Euler (Section 8.2)

Suppose we assume that φ(t) is a solution to our differential equation, y′ = f(t, y). Then we
can write:

φ′(t) = f(t, φ(t))

and by integrating from tn to tn+1, we have:∫ tn+1

tn

φ′(t) dt =

∫ tn+1

tn

f(t, φ(t)) dt

So that

φ(tn+1)− φ(tn) =

∫ tn+1

tn

f(t, φ(t)) dt

Or, more precisely

φ(tn+1) = φ(tn) +

∫ tn+1

tn

f(t, φ(t)) dt

3



Now we see that more accuracy for our algorithm would depend on how accurately we can
approximate the integral. If we denote our approximate solution by y, we might approximate
the integral using the following:

yn+1 = yn + h · f(tn, yn) + f(tn+1, yn+1)

2
≈ yn + h · f(tn, yn) + f(tn+1, yn + hf(tn, yn))

2

This is the Improved Euler method. It should be more accurate; the idea is that we’re
using information about the slope field at tn as well as tn+1 (while Euler’s method only uses
information about the slope field at the point tn).

Improved Euler in Matlab/Octave

To see what we’ll need to compute, let’s abbreviate f(tn, yn) as fn. In fact, we can keep fn
as a vector in our algorithm if we wanted to, although looking at the formula, we’ll need two
function evaluations at each step.

for i=1:n-1

k1=f(t(n),y(n));

k2=f(t(n)+h, y(n)+h*k1); % If we have the time vector, we could use t(n+1)

% in place of t(n)+h

y(n+1)=y(n)+(h/2)*(k1+k2);

t(n+1)=t(n)+h; % This line can be deleted if time was computed

% already

end

4


