
Review Solutions, Mathematical Modeling

1. Let x′ =

[
1 1
6 −4

]
x. Convert this system to an equivalent second order linear homo-

geneous differential equation, then solve that.

SOLUTION: If we use x1, x2 for the variables, we can use the first equation to solve
for x2 in terms of x1, then substitute that into the second equation:

x′1 = x1 + x2
x′2 = 6x1 − 4x2

⇒ x2 = x′1 − x1 ⇒ (x′1 − x1)′ = 6x1 − 4(x′1 − x1)

Simplifying this to get a second order equation with x1:

x′′1 − x′1 = 6x1 − 4x′1 + 4x1 ⇒ x′′ + 3x′1 − 10x1 = 0

Solving the sytem using eigenvalues and eigenvectors:

Given the matrix A, the characteristic equation is the same:

λ2 + 3λ− 10 = 0 ⇒ λ = 2,−5

If λ = 2, the eigenvector is found the usual way:

(A− λI)v = 0 ⇒ −v1 + v2 = 0 ⇒ v =

[
1
1

]
Similarly, using λ = −5, the eigenvector is found by solving

6v1 + v2 = 0 ⇒ v =

[
−1

6

]
The full solution to the system is therefore:

x(t) = C1e
2t

[
1
1

]
+ C2e

−5t
[
−1

6

]
=

[
C1e

2t + C2e
−5t

C1e
2t + 4C2e

−5t

]
Finally, in this case, the origin (equilibrium solution) is classified as a SADDLE.

2. Let y′′− 6y′ + 9y = 0 with y(0) = 1, y′(0) = 2. Convert this into an equivalent system
of first order differential equations, then solve it using eigenvectors and eigenvalues.

SOLUTION: Let x1 = y and x2 = y′. Then the system of DEs we get:

x′1 = x2
x′2 = −9x1 + 6x2

⇒ x′ =

[
0 1
−9 6

]
x

With trace 6 and det 9, the characteristic equation is λ2 − 6λ + 9 = 0 (which is what
we expected). Solving for λ, we get a double root of λ = 3.

1



We don’t need the eigenvector, but we do need that vector w. The initial condition is
specified: x1(0) = 1, and x2(0) = 2. Then:

(a− λ)x0 + by0 = w1

cx0 + (d− λ)y0 = w2
⇒ (0− 3) · 1 + 1 · 2 = w1

−9 · 1 + (6− 3) · 2 = w2
⇒ w =

[
−1
−3

]
Now the general solution is given by:

x(t) = e3t
([

1
2

]
+ t

[
−1
−3

])
3. Given each matrix A below, give the general solution to x′ = Ax, and classify the

equilibrium as to its stability (you may use the Poincaré Diagram, if needed).

(a)

[
0 1
−2 −3

]
Summary of the SOLUTION: The origin is a SINK, and the solution is:

x(t) = C1e
−t
[

1
−1

]
+ C2e

−2t
[
−1

2

]

(b)

[
−4 −17

2 2

]
SOLUTIONS: The eigenvalues are λ = −1± 5i. Using λ = −1 + 5i, we find the
corresponding eigenvector:[

−4− (−1 + 5i) −17
2 2− (−1 + 5i)

]
v = 0

Using the second equation, we get v = [−3 + 5i, 2]T . To find the solution, we
compute eλtv:

e(−1+5i)t

[
−3 + 5i

2

]
= e−t

[
(−3 cos(5t)− 5 sin(5t)) + i(−3 sin(5t) + 5 cos(5t))

2 cos(5t) + 2i sin(5t)

]
Therefore, the full solution is:

x(t) = e−t
(
C1

[
−3 cos(5t)− 5 sin(5t)

2 cos(5t)

]
+ C2

[
−3 sin(5t) + 5 cos(5t)

2 sin(5t)

])
The origin here is a SPIRAL SINK.
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(c)

[
3 −4
1 −1

]
SOLUTION: You should find a double eigenvalue, λ = 1, 1 with eigenvector v =
[2, 1]T . With no initial condition, assume it to be x1(0) = x0 and x2(0) = v0, so
that we can compute w as:

(3− 1) · x0 − 4v0 = w1

1 · x0 + (−1− 1)v0 = w2
⇒ w =

[
2x0 − 4v0
x0 − 2v0

]
Now we write the solution:

x(t) = et
([

x0
v0

]
+ t

[
2x0 − 4v0
x0 − 2v0

])
4. Suppose we have brine pouring into tank A at a rate of 2 gallons per minute, and salt

is in the brine at a concentration of 1/2 pound per gallon. Brine is being pumped into
tank A from tank B (well mixed) at a rate of 1 gallon per minute. Brine is pumped
out of tank A at a rate of 3 gallons per minute to tank B, and brine is poured into
tank B from an external source at a rate of 2 gallons per minute, and 1/3 pound of
salt per gallon. Initially, both tanks have 100 gallons of clear water.

Write the system of differential equations that model the amount of salt in the tanks
at time t.

TYPO, becoming part of the problem: Before solving, determine at what rate
the well mixed solution needs to be pumped out of Tank B to keep the tanks at 100
gallons of fluid for all time.

SOLUTION: We need to pump out 4 gallons per minute.

Now, we can write the differential equations. Recall that the model is “Rate in-Rate
out”. Let A(t), B(t) be the amount (in pounds) of salt in tank A,B respectively, at
time t in minutes. Then:

dA

dt
=

(
2 · 1

2
+ 1 · B

100

)
− 3

A

100

dB

dt
=

(
2 · 1

3
+ 3

A

100

)
− 5

B

100

You could stop there, but let’s put it in matrix form so it looks familiar:[
A
B

]′
=

1

100

[
−3 1

3 −5

] [
A
B

]
+

[
1

2/3

]
5. Consider the system x′ = Ax + b given below:[

x′1
x′2

]
=

[
1 3
4 2

] [
x1
x2

]
+

[
10
10

]
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(a) Find the equilibrium solution, xE.

SOLUTION: The equilibrium solution for a differential equation is where the
derivative is zero.[

0
0

]
=

[
1 3
4 2

] [
x1
x2

]
+

[
10
10

]
x =

1

2− 12

[
2 −3
−4 1

] [
−10
−10

]
=

[
−1
−3

]
(b) Show that, if u = x− xE, then the differential equation for u is: u′ = Au.

SOLUTION: We can show it in general-

u′ = x′−xE = Ax+b−xE+AxE−AxE = A(x−xE)+b+A(−A−1b) = A(x−xE)

Therefore, u′ = Au.

(c) Solve the differential equation by first solving the DE for u.

TYPO: The eigenvalues/eigenvectors for A are not simple expressions,
so write your answer symbolically, assuming two distinct eigenvalues.

SOLUTION:

u(t) = C1e
λ1tv1 + C2e

λ2tv2 ⇒ x(t) = C1e
λ1tv1 + C2e

λ2tv2 +

[
−1
−3

]
6. Use the Poincaré Diagram to determine how the origin changes stability by changing
α if

x′ =

[
α + 1 α

2 1

]
x

SOLUTION: To use the Poincaré Diagram, we look at expressions for the trace, deter-
minant and discriminant and determine where each is positive/negative/zero. In this
situation,

Tr(A) = α + 2 det(A) = 1− α ∆ = α2 + 8α

Performing a sign chart analysis (at the bottom, divide the α number line by where
each quantity is zero)

α + 2 − − + + +
1− α + + + + −
α(α + 8) + − − + +

α < −8 −8 < α < −2 −2 < α < 0 0 ≤ α < 1 α > 1

We can now read off the results, from left to right:

• If α < −8, we have a sink.

• If α = −8, we have a degenerate sink.

• If −8 < α < −2, we have a spiral sink.
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• If α = −2, we have a center.

• If −2 < α < 0, we have a spiral source.

• If α = 0, we have a degenerate source.

• If 0 < α < 1, we have a source.

• If α = 1, we have a line of unstable fixed points.

• If α > 1, we have a saddle.

7. Let F be given below, and linearize it at the given value.

(a) F(t) =

 t2 + 3t+ 2√
t+ 1 + 1

sin(t)

 at t = 0

SOLUTION: The “derivative” in this case is computed element-wise, so that:

F(0) =

 2
2
0

 F′(0) =

 3
1/2
1

 ⇒ L(t) = F(0)+F′(0)t =

 2
2
0

+t

 3
1/2
1


(b) f(x, y, z) = x2 + 3x+ 2y + 4z − 2 at (x, y, z) = (1,−1, 1)

In this case, the linearization is given by:

L(x, y, z) = f(1,−1, 1)+fx(1,−1, 1)(x−1)+fy(1,−1, 1)(y+1)+fz(1,−1, 1)(z−1)

Substituting everything in, we get:

L(x, y, z) = 4 + 5(x− 1) + 2(y + 1) + 4(z − 1)

(c) F(x, y) =

[
x2 + 3xy − y + 1
y2 + 2xy + x2 − 1

]
at (x, y) = (1, 0)

In this case, the linearization is given by the following, if we think of f(x, y) =
x2 + 3xy − y + 1 and g(x, y) = y2 + 2xy + x2 − 1:

L(x, y) = F(1, 0) +

[
fx(1, 0) fy(1, 0)
gx(1, 0) gy(1, 0)

] [
x− 1
y

]
=

[
2
0

]
+

[
2 2
2 2

] [
x− 1
y

]
8. For each nonlinear system below, perform a local linear analysis about all equilibria.

(a)
dx/dt = x− xy
dy/dt = y + 2xy

We should find two equilbria. The origin is a source and the point (−1/2, 1) is a
saddle.
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(b)
dx/dt = 1 + 2y
dy/dt = 1− 3x2

We should find two equilibria: (−
√

3,−1/2) and (
√

3,−1/2). The first equilibrium
is saddle, the second is a center.

Side Remark: In this instance, the full nonlinear system actually has a spiral
sink at the second equilibrium, but we would have failed to see it because of the
linearization.

9. For each of the systems in question 8, solve them by first computing dy/dx.

(a) In this case, we have a separable differential equation:

dy

dx
=
y(1 + 2x)

x(1− y)
⇒

∫
1− y
y

dy =

∫
1 + 2x

x
dx ⇒ ln |y|−y = ln |x|+2x+C

(b) In this case, we also have a separable differential equation:

dy

dx
=

1− 3x2

1 + 2y
⇒

∫
1 + 2y dy =

∫
1− 3x2 dx ⇒ y +

1

2
y2 = x− x3 + C

10. For 8(a) above, if x and y were two populations, what kinds of assumptions are being
made to result in these differential equations?

SOLUTION: In the absence of the other, both populations experience exponential
growth. In the presence of interactions between them, x suffers and y benefits (perhaps
y is eating x!).

11. Given x′ = f(x, y) and y′ = g(x, y), then a nullcline is a curve where f or g is 0. Note
that an equilibrium is where the nullclines intersect.

If x′ = −4x + y + x2 and y′ = 1 − y, then graph the nullclines, taking note of the
equilbrium solutions. Is there an area in your drawing where x′ < 0 and y′ < 0? Make
note of it.

SOLUTION: See the figure below. The region of interest is above the line and inside
the parabola.

6



12. Is the following system an example of predator-prey or competing species? In either
case, perform a local linear analysis:

x′ = x(1− 0.5y)
y′ = y(−0.75 + 0.25x)

SOLUTION: This is an example of predator-prey (x is the prey). There are two
equilibria: (0, 0) and (3, 2). When we linearize about the origin, we get a saddle, and
when we linearize about (3, 2), we get a center (which in fact does not persist in the
full nonlinear case).

13. Assume the temperature of a roast in the oven increases at a rate proportional to the
difference between the oven temperature (set to 400) and the roast temperature. If
the roast enters the oven at 50 degrees, and is measured one hour later to be 90, when
will the roast reach the FDA safe temperature of 160? (Hint: Write down, then solve
the difference equation).

TYPO: “difference equation” should be “differential equation”- The ques-
tion gives you the model for Newton’s Law of Cooling.

Let R(t) be the temp of the roast at time t. Then we’re told that, if T is the constant
temp of the oven, then

dR

dt
= −k(R− T ) ⇒ R′ = −kR + kT

Initially, if we solve the first order linear DE, we get:

R(t) = Ce−kt + 400
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Solving for C, we get C = −350. Then we solve the equation: 90 = −350e−k + 400 for
the constant k, and the solution is then:

R(t) = −350eln(31/35) t + 400

Solving for t when the roast is 160, t ≈ 3.1 hours- so the roast will be ready in
approximately 3 hours, 6 minutes.

14. Consider the sytem of differential equations below.

dx

dt
= x(1− x− y),

dy

dt
= y

(
α− y − 1

2
x

)
where you may assume that x ≥ 0, y ≥ 0, and α ≥ 0.

(a) Draw the nullclines, and locate the equilbria graphically. You might note that
α = 1 and α = 1/2 are some special cases to consider.

SOLUTION: For the equilibria, we’ll solve the first equation first:

x(1− x− y) = 0 ⇒ x = 0 or y = 1− x

Now, if x = 0 in Equation 1, then we go to Equation 2:

y(α− y − 0) = 0 ⇒ y = 0 or y = α

So far, we have (0, 0) and (0, α) as two equilibria (valid if α > 0).

Next, we go back to Equation 1 so that y = 1 − x, and see what happens in
Equation 2:

(1− x)

(
α− (1− x)− 1

2
x

)
= 0 ⇒ x = 1 or x = 2(1− α)

Using the fact that y = 1 − x, this gives us more equilibria- Listing them all so
far:

(0, 0), (0, α), (1, 0), (2(1− α), 2α− 1)

We note that the last equilibrium will be valid only if 1
2
≤ α ≤ 1 (otherwise, either

x or y is negative). With that in mind, here are some quickly sketched cases to
consider.
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(b) Linearize the system.

Typo: The second question is a little vague. It should say “Find the Jacobian
matrix for the system”, which is:[

1− y − 2x −x
−1

2
y α− 2y − 1

2
x

]
(c) Analyze what happens at the origin in terms of α using the Poincare Diagram.

SOLUTION: At the origin, we simply get the following matrix:[
1 0
0 α

]
so that the trace is 1 + α and the determinant is α. Further, the discriminant is
can be factored to (α− 1)2, so that if α > 0, the origin is always a SOURCE (at
α = 1, it is a degenerate source).

(d) If α = 3
4
, linearize at (1/2, 1/2) and give the results.

At (1/2, 1/2) where α = 3/4, we should find that the trace is −1, the determinant
is 1/8 and the discriminant is 1/2, so the point (1/2, 1/2) is a SINK. By the way,
here is the Jacobian matrix: [

−1/2 −1/2
−1/4 −1/2

]
15. Consider the IVP:

dx

dt
= −x+ 3z

dy

dt
= −y + 2z

dz

dt
= x2 − 2z

where x(0) = 0, y(0) = 1/2, and z(0) = 3. Further, we want the solution for 0 ≤ t ≤ 1.5

(a) Numerically solve the system of equations given above, and print/save the file you
used for the derivatives. First use Euler’s method (forward), with step size 0.1,
and plot the result.

For a sample solution, see the figures on the next page.

(b) Repeat the previous solution, but use our own Runge-Kutta algorithm from class
with step size 0.1. Plot the result.

The solution to this is identical to the previous one, except in using our Runge-
Kutta algorithm. To provide your solution, you would provide something like
what we did for the previous problem.
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(c) Repeat the solution, but use Octave’s built-in function ode23, and plot the result.

To show your solution, show something like the solution to the previous problem-
A screen shot showing your work would suffice.

(d) Linearize the system at the origin, then use Octave to find the eigenvalues. Con-
sidering the output, is the origin a sink, a source, or something else?

In this case, I just wanted to remind you that Octave can compute these. In the
diagonal matrix below, the eigenvalues are along the diagonal (and the eigenvec-
tors are, in order, in matrix V ).

Because all eigenvalues are negative, the origin is a SINK.
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Output for Exercise 15. First, here are the derivatives:

Next is the output from the software, with a plot:

ı
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