HW Solutions from Feb 26 (Linear Algebra notes)

1. Let the subspace H be formed by the span of the vectors v_1, v_2 given below. Given the point x_1, x_2 below, find which one belongs to H, and if it does, give its coordinates. (NOTE: The basis vectors are NOT orthonormal)

$$\boldsymbol{v}_1 = \begin{bmatrix} 1\\2\\-1 \end{bmatrix}$$
 $\boldsymbol{v}_2 = \begin{bmatrix} 2\\-1\\1 \end{bmatrix}$ $\boldsymbol{x}_1 = \begin{bmatrix} 7\\4\\0 \end{bmatrix}$ $\boldsymbol{x}_2 = \begin{bmatrix} 4\\3\\-1 \end{bmatrix}$

SOLUTION: Rather than row-reduce twice, we'll do it once on the augmented matrix below.

1	2	7	4		1	0	3	2
2	-1	4	3	\rightarrow	0	1	2	1
1	1	0	-1		0	0	1	0

How should this be interpreted? The second vector, \boldsymbol{x}_2 is in H, as it can be expressed as $2\boldsymbol{v}_1 + \boldsymbol{v}_2$. Its low dimensional representation is thus $[2, 1]^T$.

The first vector, \boldsymbol{x}_1 , cannot be expressed as a linear combination of \boldsymbol{v}_1 and \boldsymbol{v}_2 , so it does not belong to H.

3. Let the subspace G be the plane defined below, and consider the vector \boldsymbol{x} , where:

$$G = \left\{ \alpha_1 \begin{bmatrix} 1\\ 3\\ -2 \end{bmatrix} + \alpha_2 \begin{bmatrix} 3\\ -1\\ 0 \end{bmatrix} \text{ such that } \alpha_1, \alpha_2 \in \mathbb{R} \right\} \qquad \boldsymbol{x} = \begin{bmatrix} 1\\ 0\\ 2 \end{bmatrix}$$

(a) Find the matrix $(UU^T \text{ in our notes})$ that takes an arbitrary vector and projects it (orthogonally) to the plane G.

SOLUTION: The matrix U consists of the two column vectors above, but you MUST normalize them:

$$U = \begin{bmatrix} 1/\sqrt{14} & 3/\sqrt{10} \\ 3/\sqrt{14} & -1/\sqrt{10} \\ -2/\sqrt{14} & 0 \end{bmatrix} \quad UU^T = \frac{1}{35} \begin{bmatrix} 34 & -3 & -5 \\ -3 & 26 & -15 \\ -5 & -15 & -10 \end{bmatrix}$$

(b) Find the orthogonal projection of the given \boldsymbol{x} onto the plane G.

$$UU^T \boldsymbol{x} = \frac{1}{35} \begin{bmatrix} 24\\ -33\\ 15 \end{bmatrix}$$

(c) Find the distance from the plane G to the vector \boldsymbol{x} .

$$\|\boldsymbol{x} - UU^T \boldsymbol{x}\| = \sqrt{\frac{11^2}{35} + \frac{33^2}{35} + \frac{11^2}{7}} \approx 3.511$$

6. Let $\boldsymbol{a} = [-1,3]^T$. Find a square matrix P so that $P\boldsymbol{x}$ is the orthogonal projection of \boldsymbol{x} onto the span of \boldsymbol{a} . SOLUTION: Let matrix U be just the one column with (normalized!) vector \boldsymbol{a} . Then:

SOLUTION: Let matrix U be just the one column with (normalized!) vector \boldsymbol{a} . Then:

$$U = \frac{1}{\sqrt{10}} \begin{bmatrix} -1\\ 3 \end{bmatrix} \quad \Rightarrow \quad P = UU^T = \frac{1}{10} \begin{bmatrix} 1 & -3\\ -3 & 9 \end{bmatrix}$$

7. Refer to one of the programming languages (Matlab/Python/R), and reproduce finding an arbitrary 10×4 matrix with orthonormal columns. Use a random $\boldsymbol{x} \in \mathbb{R}^{10}$, and first find the coordinates of \boldsymbol{x} with respect to the four columns in Q, then compute the orthogonal projection of \boldsymbol{x} into the subspace spanned by the first four columns of Q.

SOLUTION: Given the computed matrix Q and vector \boldsymbol{x} , you should have (in your programming language):

- The coordinates of \boldsymbol{x} : $Q^T \boldsymbol{x}$
- The orthogonal projection: $QQ^T x$.
- 8. To prove that we have an *orthogonal* projection, the vector $\operatorname{Proj}_u(\boldsymbol{x}) \boldsymbol{x}$ should be orthogonal to \boldsymbol{u} . Use this definition to show that our earlier formula was correct- that is,

$$\operatorname{Proj}_u(\boldsymbol{x}) = \frac{\boldsymbol{x} \cdot \boldsymbol{u}}{\boldsymbol{u} \cdot \boldsymbol{u}} \boldsymbol{u}$$

is the orthogonal projection of \mathbf{x} onto \mathbf{u} .

SOLUTION: We show that $(\operatorname{Proj}_u(\boldsymbol{x}) - \boldsymbol{x}) \cdot \boldsymbol{u} = 0$

$$\left(\frac{\boldsymbol{x}\cdot\boldsymbol{u}}{\boldsymbol{u}\cdot\boldsymbol{u}}\boldsymbol{u}-\boldsymbol{x}\right)\cdot\boldsymbol{u}=\frac{\boldsymbol{x}\cdot\boldsymbol{u}}{\boldsymbol{u}\cdot\boldsymbol{u}}(\boldsymbol{u}\cdot\boldsymbol{u})-\boldsymbol{x}\cdot\boldsymbol{u}=\boldsymbol{x}\cdot\boldsymbol{u}-\boldsymbol{x}\cdot\boldsymbol{u}=0$$