HW Solutions from Feb 26 (Linear Algebra notes)

1. Let the subspace H be formed by the span of the vectors $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}$ given below. Given the point $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}$ below, find which one belongs to H, and if it does, give its coordinates. (NOTE: The basis vectors are NOT orthonormal)

$$
\boldsymbol{v}_{1}=\left[\begin{array}{r}
1 \\
2 \\
-1
\end{array}\right] \quad \boldsymbol{v}_{2}=\left[\begin{array}{r}
2 \\
-1 \\
1
\end{array}\right] \quad \boldsymbol{x}_{1}=\left[\begin{array}{l}
7 \\
4 \\
0
\end{array}\right] \quad \boldsymbol{x}_{2}=\left[\begin{array}{r}
4 \\
3 \\
-1
\end{array}\right]
$$

SOLUTION: Rather than row-reduce twice, we'll do it once on the augmented matrix below.

$$
\left[\begin{array}{rr|rr}
1 & 2 & 7 & 4 \\
2 & -1 & 4 & 3 \\
-1 & 1 & 0 & -1
\end{array}\right] \rightarrow\left[\begin{array}{ll|rr}
1 & 0 & 3 & 2 \\
0 & 1 & 2 & 1 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

How should this be interpreted? The second vector, \boldsymbol{x}_{2} is in H, as it can be expressed as $2 \boldsymbol{v}_{1}+\boldsymbol{v}_{2}$. Its low dimensional representation is thus $[2,1]^{T}$.
The first vector, \boldsymbol{x}_{1}, cannot be expressed as a linear combination of \boldsymbol{v}_{1} and \boldsymbol{v}_{2}, so it does not belong to H.
3. Let the subspace G be the plane defined below, and consider the vector \boldsymbol{x}, where:

$$
G=\left\{\alpha_{1}\left[\begin{array}{r}
1 \\
3 \\
-2
\end{array}\right]+\alpha_{2}\left[\begin{array}{r}
3 \\
-1 \\
0
\end{array}\right] \text { such that } \alpha_{1}, \alpha_{2} \in \mathbb{R}\right\} \quad \boldsymbol{x}=\left[\begin{array}{l}
1 \\
0 \\
2
\end{array}\right]
$$

(a) Find the matrix ($U U^{T}$ in our notes) that takes an arbitrary vector and projects it (orthogonally) to the plane G.
SOLUTION: The matrix U consists of the two column vectors above, but you MUST normalize them:

$$
U=\left[\begin{array}{rr}
1 / \sqrt{14} & 3 / \sqrt{10} \\
3 / \sqrt{14} & -1 / \sqrt{10} \\
-2 / \sqrt{14} & 0
\end{array}\right] \quad U U^{T}=\frac{1}{35}\left[\begin{array}{rrr}
34 & -3 & -5 \\
-3 & 26 & -15 \\
-5 & -15 & -10
\end{array}\right]
$$

(b) Find the orthogonal projection of the given \boldsymbol{x} onto the plane G.

$$
U U^{T} \boldsymbol{x}=\frac{1}{35}\left[\begin{array}{r}
24 \\
-33 \\
15
\end{array}\right]
$$

(c) Find the distance from the plane G to the vector \boldsymbol{x}.

$$
\left\|\boldsymbol{x}-U U^{T} \boldsymbol{x}\right\|=\sqrt{{\frac{11^{2}}{35}}^{2}+\frac{33^{2}}{35}+\frac{11}{7}^{2}} \approx 3.511
$$

6. Let $\boldsymbol{a}=[-1,3]^{T}$. Find a square matrix P so that $P \boldsymbol{x}$ is the orthogonal projection of \boldsymbol{x} onto the span of \boldsymbol{a}.
SOLUTION: Let matrix U be just the one column with (normalized!) vector \boldsymbol{a}. Then:

$$
U=\frac{1}{\sqrt{10}}\left[\begin{array}{r}
-1 \\
3
\end{array}\right] \quad \Rightarrow \quad P=U U^{T}=\frac{1}{10}\left[\begin{array}{rr}
1 & -3 \\
-3 & 9
\end{array}\right]
$$

7. Refer to one of the programming languages (Matlab/Python/R), and reproduce finding an arbitrary 10×4 matrix with orthonormal columns. Use a random $\boldsymbol{x} \in \mathbb{R}^{10}$, and first find the coordinates of \boldsymbol{x} with respect to the four columns in Q, then compute the orthogonal projection of \boldsymbol{x} into the subspace spanned by the first four columns of Q.
SOLUTION: Given the computed matrix Q and vector \boldsymbol{x}, you should have (in your programming language):

- The coordinates of $\boldsymbol{x}: Q^{T} \boldsymbol{x}$
- The orthogonal projection: $Q Q^{T} \boldsymbol{x}$.

8. To prove that we have an orthogonal projection, the vector $\operatorname{Proj}_{u}(\boldsymbol{x})-\boldsymbol{x}$ should be orthogonal to \boldsymbol{u}. Use this definition to show that our earlier formula was correct- that is,

$$
\operatorname{Proj}_{u}(\boldsymbol{x})=\frac{\boldsymbol{x} \cdot \boldsymbol{u}}{\boldsymbol{u} \cdot \boldsymbol{u}} \boldsymbol{u}
$$

is the orthogonal projection of \mathbf{x} onto \mathbf{u}.
SOLUTION: We show that $\left(\operatorname{Proj}_{u}(\boldsymbol{x})-\boldsymbol{x}\right) \cdot \boldsymbol{u}=0$

$$
\left(\frac{\boldsymbol{x} \cdot \boldsymbol{u}}{\boldsymbol{u} \cdot \boldsymbol{u}} \boldsymbol{u}-\boldsymbol{x}\right) \cdot \boldsymbol{u}=\frac{\boldsymbol{x} \cdot \boldsymbol{u}}{\boldsymbol{u} \cdot \boldsymbol{u}}(\boldsymbol{u} \cdot \boldsymbol{u})-\boldsymbol{x} \cdot \boldsymbol{u}=\boldsymbol{x} \cdot \boldsymbol{u}-\boldsymbol{x} \cdot \boldsymbol{u}=0
$$

