HW Solutions from Mar 1

Page 46: 1, 3, 4, 6.

1. Show that $\operatorname{Null}(A) \perp \operatorname{Row}(A)$. You must show that, for arbitrary $\boldsymbol{x}_1 \in \operatorname{Null}(A)$ and $\boldsymbol{x}_2 \in \operatorname{Row}(A)$, we have the inner product is $(\boldsymbol{x}_1, \boldsymbol{x}_2) = 0$. Hint: Write A in terms of its rows.

If we write A in terms of rows, $A = [r_1, r_2, \ldots, r_m]^T$, then the i^{th} component of $A\mathbf{x}$ can be written as $\mathbf{r}_i \mathbf{x} = 0$. Thus, if \mathbf{x} is in the nullspace of A, then it is orthogonal to every row of A. If \mathbf{x}_2 is a linear combination of the rows of A, then (by the properties of the dot product), it will be orthogonal to a vector from the nullspace of A.

This argument also goes in reverse.

3. Show that multiplication by an orthogonal matrix preserves lengths: $\|\mathbb{Q}\boldsymbol{x}\|_2 = \|\boldsymbol{x}\|_2$ (Hint: Use properties of inner products). Conclude that multiplication by \mathbb{Q} represents a rigid rotation.

$$\|\mathbb{Q}\boldsymbol{x}\|_2 = \boldsymbol{x}^T Q^T Q \boldsymbol{x} = \|\boldsymbol{x}\|_2$$

4. Prove the Pythagorean Theorem by induction: Given a set of n orthogonal vectors $\{x_i\}$

$$\|\sum_{i=1}^n oldsymbol{x}_i\|_2^2 = \sum_{i=1}^n \|oldsymbol{x}_i\|_2^2$$

The case with n = 1 is trivial. The case with n = 2 is straightforward. Assume true for k = n,

$$\|\sum_{i=1}^n oldsymbol{x}_i\|_2^2 = \sum_{i=1}^n \|oldsymbol{x}_i\|_2^2$$

Show true for k = n + 1:

$$\|\sum_{i=1}^{n+1} \boldsymbol{x}_i\|_2^2 = \left(\sum_{i=1}^n \boldsymbol{x}_i + \boldsymbol{x}_{n+1}
ight)^T \left(\sum_{i=1}^n \boldsymbol{x}_i + \boldsymbol{x}_{n+1}
ight) = \left(\sum_{i=1}^n \boldsymbol{x}_i
ight)^T \left(\sum_{i=1}^n \boldsymbol{x}_i
ight) + \left(\sum_{i=1}^n \boldsymbol{x}_i
ight) \boldsymbol{x}_{n+1}^T + \boldsymbol{x}_{n+1} \left(\sum_{i=1}^n \boldsymbol{x}_i
ight)^T + \boldsymbol{x}_{n+1}^T \boldsymbol{x}_{n+1}$$

6. The Orthogonal Decomposition Theorem: if $\boldsymbol{x} \in \mathbb{R}^n$ and W is a (non-zero) subspace of \mathbb{R}^n , then \boldsymbol{x} can be written *uniquely* as

 $oldsymbol{x} = oldsymbol{w} + oldsymbol{z}$

where $\boldsymbol{w} \in W$ and $\boldsymbol{z} \in W^{\perp}$.

To prove this, let $\{\boldsymbol{u}_i\}_{i=1}^p$ be an orthonormal basis for W, define $\boldsymbol{w} = (\boldsymbol{x}, \boldsymbol{u}_1)\boldsymbol{u}_1 + \ldots + (\boldsymbol{x}, \boldsymbol{u}_p)\boldsymbol{u}_p$, and define $\boldsymbol{z} = \boldsymbol{x} - \boldsymbol{w}$. Then:

- (a) Show that $\boldsymbol{z} \in W^{\perp}$ by showing that it is orthogonal to every \boldsymbol{u}_i .
 - Let $z = x \alpha_1 u_1 \alpha_2 u_2 \ldots \alpha_p u_p$, where $\alpha_j = x \cdot u_j$. Then we write out $z \cdot u_k$ for an arbitrary $k = 1, 2, \ldots, p$:

$$x \cdot u_k - \alpha_1 u_1 \cdot u_k - \ldots - \alpha_p u_p \cdot u_k = x \cdot u_k - \alpha_k = 0$$

(b) To show that the decomposition is unique, suppose it is not. That is, there are two decompositions:

$$x = w_1 + z_1, \quad x = w_2 + z_2$$

Show this implies that $w_1 - w_2 = z_2 - z_1$, and that this vector is in both W and W^{\perp} . What can we conclude from this?

The only vector that is in both W and W^{\perp} is the zero vector. Therefore, $\boldsymbol{w}_1 = \boldsymbol{w}_2$, and $\boldsymbol{z}_2 = \boldsymbol{z}_1$.