HW Solutions from Mar 1

Page 46: 1, 3, 4, 6 .

1. Show that $\operatorname{Null}(A) \perp \operatorname{Row}(A)$. You must show that, for arbitrary $\boldsymbol{x}_{1} \in \operatorname{Null}(A)$ and $\boldsymbol{x}_{2} \in \operatorname{Row}(A)$, we have the inner product is $\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right)=0$. Hint: Write A in terms of its rows.

If we write A in terms of rows, $A=\left[r_{1}, r_{2}, \ldots, r_{m}\right]^{T}$, then the $i^{\text {th }}$ component of $A \boldsymbol{x}$ can be written as $\boldsymbol{r}_{i} \boldsymbol{x}=0$. Thus, if \boldsymbol{x} is in the nullspace of A, then it is orthogonal to every row of A. If \boldsymbol{x}_{2} is a linear combination of the rows of A, then (by the properties of the dot product), it will be orthogonal to a vector from the nullspace of A.
This argument also goes in reverse.
3. Show that multiplication by an orthogonal matrix preserves lengths: $\|\mathbb{Q} \boldsymbol{x}\|_{2}=\|\boldsymbol{x}\|_{2}$ (Hint: Use properties of inner products). Conclude that multiplication by \mathbb{Q} represents a rigid rotation.

$$
\|\mathbb{Q} \boldsymbol{x}\|_{2}=\boldsymbol{x}^{T} Q^{T} Q \boldsymbol{x}=\|\boldsymbol{x}\|_{2}
$$

4. Prove the Pythagorean Theorem by induction: Given a set of n orthogonal vectors $\left\{\boldsymbol{x}_{i}\right\}$

$$
\left\|\sum_{i=1}^{n} \boldsymbol{x}_{i}\right\|_{2}^{2}=\sum_{i=1}^{n}\left\|\boldsymbol{x}_{i}\right\|_{2}^{2}
$$

The case with $n=1$ is trivial. The case with $n=2$ is straightforward. Assume true for $k=n$,

$$
\left\|\sum_{i=1}^{n} \boldsymbol{x}_{i}\right\|_{2}^{2}=\sum_{i=1}^{n}\left\|\boldsymbol{x}_{i}\right\|_{2}^{2}
$$

Show true for $k=n+1$:

$$
\begin{gathered}
\left\|\sum_{i=1}^{n+1} \boldsymbol{x}_{i}\right\|_{2}^{2}=\left(\sum_{i=1}^{n} \boldsymbol{x}_{i}+\boldsymbol{x}_{n+1}\right)^{T}\left(\sum_{i=1}^{n} \boldsymbol{x}_{i}+\boldsymbol{x}_{n+1}\right)= \\
\left(\sum_{i=1}^{n} \boldsymbol{x}_{i}\right)^{T}\left(\sum_{i=1}^{n} \boldsymbol{x}_{i}\right)+\left(\sum_{i=1}^{n} \boldsymbol{x}_{i}\right) \boldsymbol{x}_{n+1}^{T}+\boldsymbol{x}_{n+1}\left(\sum_{i=1}^{n} \boldsymbol{x}_{i}\right)^{T}+\boldsymbol{x}_{n+1}^{T} \boldsymbol{x}_{n+1}
\end{gathered}
$$

6. The Orthogonal Decomposition Theorem: if $\boldsymbol{x} \in \mathbb{R}^{n}$ and W is a (non-zero) subspace of \mathbb{R}^{n}, then \boldsymbol{x} can be written uniquely as

$$
\boldsymbol{x}=\boldsymbol{w}+\boldsymbol{z}
$$

where $\boldsymbol{w} \in W$ and $\boldsymbol{z} \in W^{\perp}$.
To prove this, let $\left\{\boldsymbol{u}_{i}\right\}_{i=1}^{p}$ be an orthonormal basis for W, define $\boldsymbol{w}=\left(\boldsymbol{x}, \boldsymbol{u}_{1}\right) \boldsymbol{u}_{1}+\ldots+$ $\left(\boldsymbol{x}, \boldsymbol{u}_{p}\right) \boldsymbol{u}_{p}$, and define $\boldsymbol{z}=\boldsymbol{x}-\boldsymbol{w}$. Then:
(a) Show that $\boldsymbol{z} \in W^{\perp}$ by showing that it is orthogonal to every \boldsymbol{u}_{i}. Let $z=x-\alpha_{1} u_{1}-\alpha_{2} u_{2}-\ldots-\alpha_{p} u_{p}$, where $\alpha_{j}=x \cdot u_{j}$. Then we write out $z \cdot u_{k}$ for an arbitrary $k=1,2, \ldots, p$:

$$
x \cdot u_{k}-\alpha_{1} u_{1} \cdot u_{k}-\ldots-\alpha_{p} u_{p} \cdot u_{k}=x \cdot u_{k}-\alpha_{k}=0
$$

(b) To show that the decomposition is unique, suppose it is not. That is, there are two decompositions:

$$
\boldsymbol{x}=\boldsymbol{w}_{1}+\boldsymbol{z}_{1}, \quad \boldsymbol{x}=\boldsymbol{w}_{2}+\boldsymbol{z}_{2}
$$

Show this implies that $\boldsymbol{w}_{1}-\boldsymbol{w}_{2}=\boldsymbol{z}_{2}-\boldsymbol{z}_{1}$, and that this vector is in both W and W^{\perp}. What can we conclude from this?
The only vector that is in both W and W^{\perp} is the zero vector. Therefore, $\boldsymbol{w}_{1}=\boldsymbol{w}_{2}$, and $\boldsymbol{z}_{2}=\boldsymbol{z}_{1}$.

