HW Solutions Assigned Mar 3

Page 53: 1, 2, 8

1. Show that if λ is an eigenvalue of $A^{T} A$, then λ is also an eigenvalue of $A A^{T}$.

Hint: If λ is an eigenvalue of $A^{T} A$ with eigenvector \mathbf{v}, then $A^{T} A \mathbf{v}=\lambda \mathbf{v}$. Now what equation must be true if λ is an eigenvalue of $A A^{T}$?
SOLUTION: If λ is an eigenvalue of $A^{T} A$ with eigenvector \mathbf{v}, then

$$
A^{T} A \mathbf{v}=\lambda \mathbf{v} \quad \Rightarrow \quad A A^{T} A \mathbf{v}=\lambda A \mathbf{v} \quad \Rightarrow \quad A A^{T} \boldsymbol{u}=\lambda \boldsymbol{u}
$$

2. There is a beautiful relationship between the column vectors of U and V. We will assume that A is $m \times n$ with rank k, and $A=U \Sigma V^{T}$ is the SVD of A. Then:

$$
A \boldsymbol{v}_{i}=\sigma_{i} \boldsymbol{u}_{i} \quad \text { and } \quad A^{T} \boldsymbol{u}_{i}=\sigma_{i} \boldsymbol{v}_{i}
$$

NOTE: The importance of this is that, if you know the left singular vectors, then you can compute the right singular vectors.

HINT: You might start with $A \boldsymbol{v}_{i}$, then recall that $A=U \Sigma V^{T}$, which can be written as a sum of k matrices. The proof of the second equation is similar.
8. Compute the SVD by hand of the following matrices:

$$
A_{1}=\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right) \quad A_{2}=\left(\begin{array}{ll}
0 & 2 \\
0 & 0 \\
0 & 0
\end{array}\right)
$$

(Hint: $A^{T} A$ and $A A^{T}$ are symmetric matrices.)
SOLUTION: I'm giving the solution below- If you need help with the steps in the computation, please ask!

$$
\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right) U=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{rr}
\sqrt{2} & 0 \\
0 & 0
\end{array}\right] \frac{\sqrt{2}}{2}\left[\begin{array}{rr}
1 & -1 \\
1 & 1
\end{array}\right]^{T}
$$

and

$$
\left(\begin{array}{ll}
0 & 2 \\
0 & 0 \\
0 & 0
\end{array}\right)=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ll}
2 & 0 \\
0 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right]
$$

