HW Solutions from Mar 10

Section 2.4, p. 22: \#2 (computer), 6, 7 (\#1-7 assigned, but turn in only those three).
2. (a) I wanted you to see that $\sin (t)$ and $\cos (t)$ were uncorrelated, but the question left out an important point: We should use equally spaced points between 0 and 2π for this to work. Matlab code and output:

```
>> t=linspace(0,2*pi)';
>> v=sin(t); u=cos(t); u'*v
ans =
    -1.8180e-15
```

(b) For the correlation, Matlab gives a vector. The off-diagonal entries are the correlation coefficient.

```
>> corrcoef(u.^2,v.^2)
ans =
    1 -1
    -1 1
```

(c) Same idea as the previous problem.

```
>> y=2*t-5; corrcoef(t,y)
ans =
    1
    1 1
>> y=-t+5; corrcoef(t,y)
ans =
    1.0000 -1.0000
    -1.0000 1.0000
```

6. Let s_{x}^{2} be the variance of \boldsymbol{x}, so that $s_{x}^{2}=\frac{1}{p-1} \sum_{k=1}^{p}(x-\bar{x})^{2}$ Now, the covariance of \mathbf{x} and $a \mathbf{x}+b$ is given by the following:

$$
\frac{1}{p-1} \sum_{k=1}^{p}(x-\bar{x})(a x-b-\overline{a x-b})
$$

We found that $\overline{a x-b}=a \bar{x}-b$ in a previous problem, so

$$
(a x-b)-(\overline{a x-b})=(a x-b)-(a \bar{x}-b)=a(x-\bar{x})
$$

Substituting this back in, we get:

$$
\frac{1}{p-1} \sum_{k=1}^{p}(x-\bar{x}) a(x-\bar{x})=a s_{x}^{2}
$$

7. For the correlation coefficient,

$$
r_{x y}^{2}=\frac{s_{x y}^{2}}{s_{x} s_{y}}
$$

Recall that we just showed: $s_{x y}^{2}=a s_{x}^{2}$, and in Problem $\# 4, s_{y}^{2}=a^{2} s_{x}^{2}$, so substituting these values in, we get

$$
r_{x y}^{2}=\frac{s_{x y}^{2}}{s_{x} s_{y}}=\frac{a s_{x}^{2}}{s_{x} \sqrt{\left(a^{2} s_{x}^{2}\right)}}=\frac{a s_{x}^{2}}{s_{x}|a| s_{x}}=\frac{a}{|a|}
$$

This expression turns out to be the "sign" (aka "signum") of $a:+1$ if $a>0,-1$ if $a<0$, and we'll assume that $a \neq 0$.

