HW Solutions from Mar 31 (Linearization and Multivariate Newton)

p. 114: $1,3,5,7$. Use the provided code to answer $\# 5$.

1. SOLUTIION: Using the linearization of f at $(0,1)$,

$$
f(\mathbf{x}) \approx f(0,1)+\nabla f((0,1)(\mathbf{x}-(0,1))
$$

Substituting $\mathbf{x}=(1 / 2,3 / 2)$ gives us: $3+[1,-2][1 / 2,1 / 2]^{T}=5 / 2$.
3. SOLUTION: Increasing the fastest in the direction of the gradient. In this case,

$$
f_{x}=y, \quad f_{y}=x+2 y \quad \Rightarrow \quad \nabla f(x, y)=\langle y, x+2 y\rangle \quad \Rightarrow \quad \nabla f(2,1)=\langle 1,4\rangle
$$

5. We'll need a script file to output the gradient and Hessian:

$$
\nabla f=\left\langle 4 x^{3}-8 x y, 4 y^{3}-4 x^{2}+2\right\rangle \quad H f=\left[\begin{array}{rr}
12 x^{2}-8 y & -8 x \\
-8 x & 12 y^{2}
\end{array}\right]
$$

For example,

```
function [f,df,Hf]=testfunc01(x)
    temp=x;
    %Changing notation:
    x=temp(1); y=temp(2);
    f=x^4+y^4-4*x^2*y+2*y;
    df=[4*x^3-8*x*y; 4*y^3-4*x^2+2]
    Hf=[12*x^2-8*y, -8*x; -8*x, 12*y^2]
```

Then in the main script file, we might do the following, then look to see what points (if any) the algorithm converges to. After a while, you should see at least a few.
$\mathrm{x}=\mathrm{randn}$; $\mathrm{y}=\mathrm{randn}$;
MultiNewton(@testfunc01,[x(i);y(j)],50,1e-7)
7. This is really just a "notation recognition" problem. We were told that

$$
\phi^{\prime}(t)=\nabla f(\mathbf{a}-t \mathbf{u}) \cdot \mathbf{u}=0
$$

What is \mathbf{u} ? We're moving in the direction of the gradient. Therefore, defining the notation using $\mathbf{x}_{i}, \mathbf{x}_{i+1}$, at the optimal value of t, t^{*}, we have:

$$
\mathbf{a}=\mathbf{x}_{i}, \quad \mathbf{u}=\nabla f\left(\mathbf{x}_{i}\right), \quad \mathbf{x}_{i+1}=\mathbf{a}-t^{*} \mathbf{u}=\mathbf{x}_{i}-t^{*} \nabla f\left(\mathbf{x}_{i}\right)
$$

Therefore, substituting these values into $\phi^{\prime}(t)$, we get:

$$
\nabla f\left(\mathbf{x}_{i+1}\right) \cdot \nabla f\left(\mathbf{x}_{i}\right)=0
$$

