
HW Solutions from Mar 31

(Linearization and Multivariate Newton)

p. 114: 1, 3, 5, 7. Use the provided code to answer #5.

1. SOLUTIION: Using the linearization of f at (0, 1),

f(x) ≈ f(0, 1) +∇f((0, 1)(x− (0, 1))

Substituting x = (1/2, 3/2) gives us: 3 + [1,−2][1/2, 1/2]T = 5/2.

3. SOLUTION: Increasing the fastest in the direction of the gradient. In this case,

fx = y, fy = x+ 2y ⇒ ∇f(x, y) = 〈y, x+ 2y〉 ⇒ ∇f(2, 1) = 〈1, 4〉

5. We’ll need a script file to output the gradient and Hessian:

∇f = 〈4x3 − 8xy, 4y3 − 4x2 + 2〉 Hf =

[
12x2 − 8y −8x

−8x 12y2

]
For example,

function [f,df,Hf]=testfunc01(x)

temp=x;

%Changing notation:

x=temp(1); y=temp(2);

f=x^4+y^4-4*x^2*y+2*y;

df=[4*x^3-8*x*y; 4*y^3-4*x^2+2]

Hf=[12*x^2-8*y, -8*x; -8*x, 12*y^2]

Then in the main script file, we might do the following, then look to see what points
(if any) the algorithm converges to. After a while, you should see at least a few.

x=randn; y=randn;

MultiNewton(@testfunc01,[x(i);y(j)],50,1e-7)

7. This is really just a “notation recognition” problem. We were told that

φ′(t) = ∇f(a− tu) · u = 0

What is u? We’re moving in the direction of the gradient. Therefore, defining the
notation using xi,xi+1, at the optimal value of t, t∗, we have:

a = xi, u = ∇f(xi), xi+1 = a− t∗u = xi − t∗∇f(xi)

Therefore, substituting these values into φ′(t), we get:

∇f(xi+1) · ∇f(xi) = 0

1


