
Chapter 9

Optimization

9.1 Introduction: Going from Data to Functions

In this chapter, we take a turn into the heart of function building (which is, in turn, the primary topic of
machine learning and model building as well).

In many cases, we’ll have some kind of proposed form for a function. For example, in the line of best fit
problem, the proposed form for the line was: y = mx+ b, or F (x) = mx+ b, where we needed to determine
the model parameters m and b. Given data points (xi, ti) where t is for targets, this translated to our goal
of finding m, b that satisfied some equation or system of equations:

F (x1) = t1
F (x2) = t2

...
F (xp) = tp

There was no exact solution to this system, which gives us error, which is typically a sum-of-squares:

E(m, b) = (t1 − y1)
2 + (t2 − y2)

2 + · · ·+ (tp − yp)
2 =

p�

k=1

(tk − yk)
2

where yi is our model output, F (xi). And here we go- We need to minimize the error. In fact, most problems
in machine learning (and model building) are cast as optimization problems.

How do we optimize a function? We learned the steps back in Calculus, and the algorithm depended on
whether or not we had a bounded domain. We’ll assume a domain that is not bounded for the remainder of
this chapter, unless specified otherwise.

In the unbounded case, we know that the candidates for the maximum and minimum are found among
the critical points of f (where f �(x) = 0 or where the derivative does not exist). Therefore, we need to have
an algorithm that can seek out the roots (or the zeros) of a function.

9.2 Optimization and Calculus

As discussed, there is a close relationship between finding the roots to a function and optimizing a function.
For the roots, we solve for where g(x) = 0, and in the optimization problem, we solve for where f �(x) = 0.

Therefore, discussions about optimization often turn out to be discussions about finding roots. In that
spirit, we look at a very basic algorithm for finding roots- An algorithm called “The Bisection Method”.

103

9.2.1 The Bisection Method

The motivation for this method comes from the Intermediate Value Theorem from Calculus- In this case,
suppose that our function g is continuous on [a, b], and further g(a) and g(b) have different signs (more
compactly g(a)g(b) < 0), then there is a c in the interval such that g(c) = 0.

Now, given such an interval [a, b], we can get a better approximation by breaking the interval in half.
Here is the algorithm:

The Bisection Algorithm to Solve f(x) = 0

• Initialize with function f(x), values of a, b and tol, so that the root of f is inside the interval
[a, b] (we should have f(a)f(b) < 0).

• Set fa = f(a), fb = f(b).

• Main loop:

– Set c = (a+ b)/2, and compute fc = f(c).

– If fafc < 0, then the new interval is [a, c]. Set b = c, fb = fc.

Otherwise, the new interval is [c, b]. Set a = c, fa = fc

– Stopping criteria (one or more):

∗ (b− a)/2 < tol, or

∗ |fc| < tol (or f(c) is actually 0)

– At the end, output the midpoint of the current interval as the solution: (a+ b)/2.

The nice thing about the bisection method is that it is easy to implement. It takes a lot of iterations to
converge, however.

There are examples of this algorithm available to you in Matlab and Python that we wrote ourselves
directly from our pseudo-code. At the end of this section, we’ll discuss the built-in code.

When using the Bisection Method in either Matlab or Python, we need to be able to pass in the name
of the function to our algorithm. Here is an example, where we solve x3 + x− 1 = 0 with a starting interval
of [0, 1] and a tolerance of “5e-5” (which is short for scientific notation, 5× 10−5).

In Matlab, we’ll assume that bisect.m is in the folder or search path, and in Python, we’ll assume that
the definition of the function bisection has been run (again, as a reminder, these are functions that we
defined and are available on our class website).

Below we show how to create what is referred to as an anonymous function, and we’ll use that to pass
in the function g(x) into our algorithm. The nice thing about these kinds of functions is that they do not
need a separate file to define them (like Matlab), nor do the need a whole def section in Python. Of course,
if your function is more complicated, you may need to go that route, and in the next section we’ll have an
example of creating that kind of function.

Matlab Code Example Python Code Example

>>f= @(x) x.^3+x-1; >>> f = lambda x: x**3 + x - 1

>>x=bisect(f,0,1,5e-5); >>> x=bisection(f,0,1,5e-5)

9.2.2 Newton’s Method

Another method we have from Calculus is Newton’s Method. Newton’s Method is a lot faster, but it also
requires the computation of the derivative. The formula is given below. If you’re not sure where the formula
comes from, we’ll review it in class (you can also look it up online or in a calculus text).

104

Newton’s Method
Newton’s method is used to locate a root to a function g. It uses an initial guess and produces a sequence

of values that (hopefully) converge to a root.
Given g(x), and an initial guess of the root, x0, we iterate the following:

xi+1 = xi −
g(xi)

g�(xi)

Coding this is straightforward; the biggest consideration is how we’ll pass in the function. It might be easiest
to have the function compute both the value of the function and the value of the derivative at a given point.
That is currently the way the code is written.

We might mention that the code might be more streamlined if you have one (anonymous) function to
handle the computation of g, and a second to compute the computation of the derivative, g�. Feel free to
make those changes.

To use either the bisection or Newton’s method Matlab functions, we’ll need to define the function (that
we’re finding the roots to). You can either use an anonymous function handle (defined in-line) or use an
m−file- It is useful to go ahead and program in both f and the derivative so you can use either bisection or
Newton’s method. Here’s an example finding a root to ex = 3x.

First, we’ll write a function file. To the left is Matlab, to the right is Python:

function [y,dy]=testfunc01(x)

% Test function e^x-3x

y=exp(x)-3*x; % Output y

dy=exp(x)-3; % and dy

import math

def testfunc01(x):

y=math.exp(x)-3*x

dy=math.exp(x)-3

return y,dy

We’ll put together examples in Matlab and Python. To keep things tidy, we’ll have the function definitions
in the same file as the script. (This is available as ExScript1.m or ExScript1.py on our class website).

Built-in Methods

I don’t believe that Matlab has the Bisection Method or Newton’s Method specifically built-in on their own.
Rather, it uses fzero as a general solver for the roots of a function, but it uses methods that don’t rely on
the derivative (bisection is one option), so it is slower. It also provides fminbnd, fminunc, fmincon and
others in the Optimization toolbox. For now, we’ll just stick to our two algorithms.

In contract, in Python we have scipy.optimize.newton(), where the inputs vary depending on the
information available.

9.3 Homework

1. It’s always good to be able to do a simple example of these algorithms “by hand”. Try these out (you
may use a hand calculator):

(a) Estimate the first root of ex − 5x by computing three iterations of the bisection method on the
interval [0, 1].

(b) Estimate the second root of ex − 5x by computing Newton’s Method twice, with a starting guess
of x0 = 2.

2. Use the example script file in Matlab or Python to solve the next two problems. You can put them
both on the same script, both functions can be anonymous.

(a) Use the bisection method to find the root correct to 6 decimal places: 3x3 + x2 = x+ 5.

105

(b) Use Newton’s Method to find the same root.

3. In this exercise, we want to look at how fast Newton’s Method will converge as a function of the initial
guess. We’ll use f(x) = x3−2 (so we’ll be estimating 3

√
2). We will choose the initial guess x0 from the

interval [−2, 2], and run Newton’s Method- Keeping track of how many iterations it takes to converge.

We then repeat this for another x0, and another x0- In fact, we take 150 values between [−2, 2] for the
initial condition, and plot the number of iterations for convergence (in red triangles below).

We’ll then plot the curve f(x) = x3 − 2, and the derivative y = 3x2 in the same graph.

See if you can examine the curve and explain the shape you see.

(Extra for students with coding experience: Reproduce the graph for yourself!)

9.4 Linearization

Before continuing with these algorithms, it will be helpful to review the Taylor series for a function of one
variable, and see how it extends to functions of more than one variable.

Recall that the Taylor series for a function f(x), based at a point x = a, is given by the following, where
we assume that f is analytic:

f(x) = f(a) + f �(a)(x− a) +
f ��(a)
2!

(x− a)2 + · · · =
∞�

n=0

f (n)(a)

n!
(x− a)n

Therefore, we can approximate f using a constant:

f(x) ≈ f(a)

or using a linear approximation (which is the tangent line to f at a):

f(x) ≈ f(a) + f �(a)(x− a)

or using a quadratic approximation:

f(x) ≈ f(a) + f �(a)(x− a) +
f ��(a)
2

(x− a)2

106

We can do something similar if f depends on more than one variable. For example, in Calculus III we look
at functions like

z = f(x, y)

In this case, the linearization of f at x = a, y = b is given by the tangent plane:

z = f(a, b) + fx(a, b)(x− a) + fy(a, b)(y − b)

Similarly, if y = f(x1, x2, . . . , xn), then the tangent plane at x1 = a1, . . . , xn = an is given by:

z =f(a1, a2, . . . , an) + fx1(a1, . . . , an)(x1 − a1) + fx2(a1, . . . , an)(x2 − a2) + . . .

fxn(a1, . . . , an)(xn − an)

If we want to go further with a second order (quadratic) approximation, it looks very similar. First, if
z = f(x, y) at (a, b), the quadratic approximation looks like this:

z = f(a, b) + fx(a, b)(x− a)+fy(a, b)(y − b) +
1

2
[fxx(a, b)(x− a)2+

2fxy(a, b)(x− a)(y − b) + fyy(a, b)(y − b)2]

where we assume that fxy(a, b) = fyx(a, b). For functions of n variables, the notation gets a little awkward.
We’ll define a new structure that will make the notation work a little better.

Gradient and Hessian

Let y = f(x1, . . . , xn) be a real valued function of n variables. To make the notation a bit easier to read,
we’ll denote the partial derivatives using subscript notation, where

∂f

∂xi

.
= fi

∂2f

∂xi∂xj

.
= fji

(Does the order of the differentiation matter? In the last equation, could I have written fij?)
We’ll recall from Calculus III that the gradient of f is usually defined as a row vector of first partial

derivatives:
∇f = [f1, f2, . . . , fn]

The n×n matrix of second partial derivatives is called the Hessian matrix, where the (i, j) element is fij ,
or

Hf =

f11 f12 · · · f1n
f21 f22 · · · f2n

...
...

fn1 fn2 · · · fnn

Using this notation, the linear approximation to f(x1, . . . , xn) = f(x) at the point x = a is:

f(a) +∇f(a)(x− a)

(That last term is a dot product, or a row vector times a column vector) The quadratic approximation
to f is:

f(a) +∇f(a)(x− a) +
1

2
(x− a)THf(a)(x− a)

As another example, suppose we want the quadratic approximation to the function

w = x sin(y) + y2z + xyz + z

107

Find the quadratic approximation to w at the point (1, 0, 2).

SOLUTION: We need to evaluate f , all the first partials, and all the second partials at the given point:

f(1, 0, 2) = 1 · 0 + 0 · 2 + 0 + 2 = 2

Now, using our new notation for partial derivatives:

f1 = sin(y) + yz ⇒ f1(1, 0, 2) = 0

f2 = x cos(y) + 2yz + xz ⇒ f2(1, 0, 2) = 3

f3 = y2 + xy + 1 ⇒ f3(1, 0, 2) = 1

Therefore, ∇f(1, 0, 2) = [0, 3, 1]. Now computing the Hessian, we get:

0 cos(y) + z y
cos(y) + z −x sin(y) + 2z 2y + x

y 2y + x 0

������
x=1,y=0,z=2

=

0 3 0
3 4 1
0 1 0

Now we can put these into the formula for the quadratic approximation:

2 + [0, 3, 1]

x− 1
y

z − 2

+

1

2
[x− 1, y, z − 2]

0 3 0
3 4 1
0 1 0

x− 1
y

z − 2

And expanded, we could write this as:

2 + 3y + (z − 2) +
1

2

�
6(x− 1)y + 4y2 + 2y(z − 2)

�
=

−2y + z + 3xy + 2y2 + yz

This is the quadratic approximation to x sin(y) + y2z + xyz + z at the point (1, 0, 2).

Linearization, Continued

Suppose we have a general function G that inputs n variables and outputs m variables. In that case, we
might write G as:

G(x) =

g1(x1, x2, . . . , xn)
g2(x1, x2, . . . , xn)

...
gm(x1, x2, . . . , xn)

For example, here’s a function that inputs two variables and outputs 3 nonlinear functions:

G(x, y) =

x2 + xy + y2 − 3x+ 5
sin(x) + cos(y)

1 + 3x− 5y + 2xy

 (9.1)

We need a new way of getting the derivative- In this case, it is called the Jacobian matrix. If G maps
IRn to IRm, then the Jacobian matrix is m×n, where each row is the gradient of the corresponding function:

G(x) =

g1(x1, x2, . . . , xn)
g2(x1, x2, . . . , xn)

...
gm(x1, x2, . . . , xn)

 ⇒ JG =

∇g1(x1, x2, . . . , xn)
∇g2(x1, x2, . . . , xn)

...
∇gm(x1, x2, . . . , xn)

108

Or, written out, the (i, j) element of the Jacobian matrix for G is:

(JG)ij =
∂gi
∂xj

Continuing with our previous example (Equation 9.1), we’ll construct the Jacobian matrix:

G(x, y) =

x2 + xy + y2 − 3x+ 5
sin(x) + cos(y)

1 + 3x− 5y + 2xy

 ⇒ JG =

2x+ y − 3 x+ 2y
cos(x) − sin(y)
3 + 2y −5 + 2x

As a second example, suppose that we have a function f that maps IRn to IR. Then we could let

G(x) = ∇f(x)

Note that we have to think of the gradient as a column vector instead of a row, and the ith row is:

fxi(x1, x2, . . . , xn)

so that G maps IRn to IRn. Furthermore, in that case, the Jacobian of G is the Hessian of f :

(JG)ij =
∂fxi

∂xj
=

∂

∂xj

�
∂f

∂xi

�
=

∂2f

∂xi∂xj

(We’re using Clairaut’s Theorem to simplify our expression).
Now we get to the linearization of the function G at a point x = a:

G(a) + JG(a)(x− a)

To illustrate this notation, let’s linearize Equation 9.1 at the origin (0, 0).

G(0, 0) =

5
1
1

 JG(0, 0) =

−3 0
1 0
3 −5

Therefore, the linearization at the origin is:

5
1
1

+

−3 0
1 0
3 −5

�

x
y

�
=

5− 3x
1 + x

1 + 3x− 5y

You might notice that each row is the linearization of the corresponding function from G- For example, 1+x
is the linearization of sin(x) + cos(y) at the point (0, 0).

Now we can get back to Newton’s Method.

Multivariate Newton’s Method

In the general case, we are solving for the critical points of some function f ,

∇f(x) = 0

That is, if f depends on n variables, then this is a system of n equations (in n unknowns).
As we did in the previous section, we can think of the gradient itself as a function:

G(x) = ∇f(x)

109

and think about how Newton’s Method will apply in this case.
Recall that in Newton’s Method in one dimension, we begin with a guess x0. We then solve for where

the linearization of f crosses the x−axis:

f(x0) + f �(x0)(x− x0) = 0

From which we get the formula

xi+1 = xi −
f(xi)

f �(xi)

Now we do the same thing with the vector-valued function G, where G : IRn → IRn. Start with an initial
guess, x0, then we linearize G and solve the following for x:

G(x0) + JG(x0)(x− x0) = 0

Remember that JG, the Jacobian of G, is now an n × n matrix, so this is a system of n equations in
n unknowns. Using the recursive notation, and solving for x, we now get the formula for multivariate
Newton’s Method:

xi+1 = xi − JG−1(xi)G(xi)

We should notice the beautiful way that method generalizes to multiple dimensions- The reciprocal 1/f �(xi)
becomes the matrix inverse: JG−1(x0).

9.5 Nonlinear Optimization with Newton

Now we go back to our original question: We want to optimize a function whose domain is multidimensional:

min
x

f(x) or max
x

f(x)

where it is assumed that f : IRn → IR. To use Newton’s Method, we let G = ∇f for the formulas in the
previous section. Here’s a summary:

Multivariate Newton’s Method to Solve ∇f(x) = 0

Given an initial x0, compute a sequence of better approximations to the solution:

xi+1 = xi −Hf−1(xi)∇f(xi)

where Hf is the Hessian matrix (n× n matrix of the second partial derivatives of f).

Example: Minimize f(x, y) = 1
4x

4 − 1
2x

2 + 1
2y

2.
SOLUTION: First, we can use Calculus to check the computer output. The gradient is:

∇f = [x3 − x, y]

so that the critical points are (−1, 0), (1, 0) and (0, 0).

9.5.1 Issue: Local Extrema

As in calculus, once we find the critical points, we need to determine if they represent a local max, a local
min, or something else (like a saddle).

We may recall the “second derivatives test” from Calculus III- It actually uses the Hessian:

110

The Second Derivatives Test for z = f(x, y) at critical point (a, b)

Let D = fxx(a, b)fyy(a, b)− f2
xy(a, b). If

• If D > 0 and fxx(a, b) > 0, then f(a, b) is a local min.

• If D > 0 and fxx(a, b) < 0, then f(a, b) is a local max.

• If D < 0, then f(a, b) is a saddle point.

Returning to our example, the Hessian of f :

Hf =

�
fxx(x, y) fxy(x, y)
fyx(x, y) fyy(x, y)

�
=

�
3x2 − 1 0

0 1

�

Therefore, the second derivatives test is a test using the determinant of the Hessian at the critical point. In
this example, at (±1, 0), the determinant is positive and fxx(±1, 0) is positive. Therefore, f(±1, 0) = 1/4 is
the local minimum. We have a saddle point at the origin.

9.5.2 Issue: Matrix Inversion

Since the multivariate Newton’s method requires us to invert an n × n matrix, we need to be careful. In
fact, many algorithms will watch the eigenvalues of the Hessian to make sure that the matrix doesn’t get
too close to being non-invertible. One way to do this is to track what is called the condition number of
the matrix. The condition number of the matrix is defined as:

k =
|λmax|
|λmin|

.

If the matrix is not invertible, or very close to being not invertible, then λmin ≈ 0, which makes the condition
number blow up to a very large number.

One way we may avoid this problem is through the use of the pseudo-inverse, but one need to be careful
about when to employ this technique.

Multivariate Newton’s Method, in Matlab and Python

These will be provided in a separate handout.

9.6 Gradient Descent

The method of gradient descent is an algorithm that will search for local extrema by taking advantage of
the fact about gradients:

The gradient of a function at a given point will point in the direction of fastest increase
(of the function).

Therefore, if we started at a point (or vector) a, if we want to find a local maximum, we should move in
the direction of the gradient. To locate a local minimum, we should move in the direction negative to the
gradient.

Therefore, the method of gradient descent proceeds as follows: Given a starting point a and a scalar α
(which is referred to as the step size), we iterate the following:

xi+1 = xi − α∇f(xi)

111

The method is fairly quick, but can have bad convergence properties- Mainly because we have that
step size. There is a way to get “best” step size α. In the following, we’ll continue with finding the local
minimum.

Once we choose a direction of travel, the idea will be to follow that line until we find the minimum of the
function (along the line). That is, we have a small optimization problem. Find the value of t that minimizes
the expression:

f(a− t∇f(a))

This is called a line search, and can be time consuming. Before continuing, let’s look at this more closely.
Define a new function φ(t) as the output along the line:

φ(t) = f(a− tu) = f

a1 − tu1

a2 − tu2

...
an − tun

where u is a vector and f depends on x1, . . . , xn.
Then optimizing this means to find where the derivative of φ is zero. Let’s compute the derivative using

the chain rule:

φ�(t) =
∂f

∂x1

∂x1

∂t
+ · · ·+ ∂f

∂xn

∂xn

∂t
=

∂f

∂x1
u1 + · · ·+ ∂f

∂xn
un = −∇f(a− tu) · u

(Note the minus sign from differentiating −tu). Thus, setting this to zero and solving should give us an
optimal step size.

Example: By hand, compute one step of gradient descent to the following (with optimal step size).

f(x, y) = 4x2 − 4xy + 2y2 (x0, y0) = (2, 3).

SOLUTION:

Step 1: Compute the gradient and evaluate it at (2, 3):

∇f = [8x− 4y,−4x+ 4y] ⇒ ∇f(2, 3) = [4, 4]

Step 2A: Find the parametric equations of the line along which we will travel (h is the stepsize to be found
later):

x0 − h∇f(x0) =

�
2
3

�
− h

�
4
4

�
=

�
2− 4h
3− 4h

�

Step 2B: Apply f to the path found in part 2A. This is the expression we want to minimize.

φ(h) = f(x0 − h∇f(x0) = f(2− 4h, 3− 4h)

We could write out this expression, but it is not needed at the moment.

Step 2C: To find the optimal path, we define φ(h) to be the function restricted to the line:

φ(h) = f(2− 4h, 3− 4h)

We’ll need to evalate the gradient along the line, so let’s go ahead and compute that:

fx(2− 4h, 3− 4h) = 8(2− 4h)− 4(3− 4h) = 16− 32h+ 12 + 16h = 4− 16h

fy(2− 4h, 3− 4h) = −4(2− 4h) + 4(3− 4h) = −8 + 16h+ 12− 16h = 4

112

Step 3: Take the derivative of φ, set it equal to zero, and solve for h.

φ�(h) = −∇f(2− 4h, 3− 4h) ·∇f(2, 3) = −[4− 16h, 4]

�
4
4

�
= −32 + 64h

Therefore, the derivative is zero for h = 1/2, and the second derivative is positive (φ��(h) = 64), so this
is indeed where the minimum occurs.

Step 4: Now, using that step size to advance to the next point in the domain.

x1 =

�
2
3

�
− 1

2

�
4
4

�
=

�
0
1

�

And now we would repeat our steps until we find the minimum, or some other stopping criteria is met.

9.6.1 Gradient Descent with Data

Going back to our introduction in Section 9.1, we said that typically, we’ll have some data and a model
function with some parameters, F (x;w). For example, in the line of best fit problem, the proposed form for
the line was: y = mx + b, or F (x;m, b) = mx + b, where we needed to determine the model parameters m
and b. Given data points (xi, ti) where t is for targets, we want to minimize the error between the desired
targets tk and the model output yk = F (xk):

E(m, b) = (t1 − y1)
2 + (t2 − y2)

2 + · · ·+ (tp − yp)
2 =

p�

k=1

(tk − yk)
2

If we compute the gradient, we’ll need ∂E/∂m and ∂E/∂b:

∂E

∂m
= 2

p�

k=1

(tk−yk)

�
−∂yk
∂m

�
= 2

p�

k=1

(tk−yk) (−xk)
∂E

∂b
= 2

p�

k=1

(tk−yk)

�
−∂yk

∂b

�
= 2

p�

k=1

(tk−yk)(−1)

Finally, our goal: Update parameters m and b to make the error decrease (be sure you’re moving in the
direction of the negative gradient!).

�
mnew

bnew

�
=

�
mold

bold

�
− α∇E(m, b)

For y = mx + b, we could actually solve the problem exactly by setting the partial derivatives to zero,
however, in the more general setting, we see that, if wi is a parameter for the model, then

∂E

∂wi
= 2

p�

k=1

(tk − yk)

�
−∂yk
∂wi

�

and the update rule is:

wnew
i = wold

i − α
∂E

∂wi

To do the full gradient descent, we see that we are required to take a sum over all the data, and that’s for
each training parameter (and for each step we take). To understand the implications of this, consider a small
training problem (one that we’ll actually work with later). Suppose our data input consists of 60,000 images
(to be specific, let’s say 28× 28 grayscale), so that the domain is in IR784, with a scalar output (for example,
classifying small images would be such a case). The model we will build later will have 101, 770 parameters.
Practically speaking, it would take a very very long time to find an approximation to a local minimum for
the error. We need a faster approach (that will be the topic of the next section).

113

9.7 Exercises

1. Suppose we have a function f so that f(0, 1) = 3 and ∇f((0, 1)) = [1,−2]. By hand, use the lineariza-
tion of f to estimate f(1/2, 3/2).

2. Let f(x, y) = x2y + 3y. By hand, compute the linearization of f at x = 1, y = 1.

3. Let f(x, y) = xy+ y2. At the point (2, 1), in which direction is f increasing the fastest? How fast is it
changing? (These are quickly done without a computer).

4. By hand, use the second derivatives test to classify the critical points of the following functions:

(a) f(x, y) = x2 + xy + y2 + y

(b) f(x, y) = xy(1− x− y)

5. Use Newton’s Method (on the computer) to find two critical points of f correct to three decimal places.

f(x, y) = x4 + y4 − 4x2y + 2y

Hint: There are three of them in −1 ≤ x ≤ 1,−1 ≤ y ≤ 1, so try several starting points.

6. By hand, perform the computations involved in the second step of the gradient descent example (with
f(x, y) = 4x2 − 4xy + 2y2).

7. We said that, in order to optimize the step size, we set the derivative of φ to zero:

φ�(t) = ∇f(a− tu) · u = 0

Show that this implies the following theorem about the method of gradient descent:

∇f(xi+1) ·∇f(xi) = 0

or, the gradient vectors from one step to the next are orthogonal to each other.

9.8 Stochastic Gradient Descent (SGD)

At the end of the section on Gradient Descent, we discussed its primary drawback. If you have a large-scale
optimization problem, it is practically impossible to use regular gradient descent. However, in recent years
researchers have had great success in using an approximation to the gradient- That method is Stochastic
Gradient Descent (SGD).

Interestingly, the method first appeared by Herbert Robbins and Sutton Monroe, back in 1951. What
has made it popular recently is the appearance of very large scale problems, starting approximately 2005
with the invention of the convolution neural network, and developing into what we now call “deep learning”.

The idea is actually very easy; the fact that the algorithm still converges is more complicated. The idea
is that, instead of using all of the data to estimate the gradient, we use only one point. In terms of our
previous example before the exercises, recall that

∂E

∂m
= 2

p�

k=1

(tk−yk)

�
−∂yk
∂m

�
= 2

p�

k=1

(tk−yk) (−xk)
∂E

∂b
= 2

p�

k=1

(tk−yk)

�
−∂yk

∂b

�
= 2

p�

k=1

(tk−yk)(−1)

In SGD, we estimate the partial derivatives. Below, r is an index chosen at random (uniformly):

∂E

∂m
≈ 2(tr − yr)

�
−∂yr
∂m

�
= 2(tr − yr) (−xr)

∂E

∂b
≈ 2(tr − yr)

�
−∂yr

∂b

�
= 2(tr − yr)(−1)

Interestingly, with this change, we cannot expect strict convergence of the error to its minimum. Here
are some samples from the following website (go there and try these out!):

114

fa.bianp.net/teaching/2018/eecs227at/stochastic_gradient.html

There are three images below- One with the learning rate too high, one with it too low, and the other
just right.

Rather than a strict convergence to the optimum, we see what is called convergence to a noise ball,
meaning that with a constant step size, we’ll keep bouncing around the optimum value.

We’ll experiment a little with the parameters to get a better understanding of what’s happening.

115

116

