
Comment on the code:

In addition to the code snippets, please be sure that you’re able to run the scripts and/or built-in commands
for the algorithms we’ve discussed in this section (includes interpreting the output from the algorithms).

The algorithms are:
K-means, Neural Gas, DBSCAN, Bisection method, Newton’s Method, Multivariate Newton’s Method,

Gradient Descent and Stochastic Gradient Descent.

II. Questions

1. Suppose the matrix A and the RREF of A are given as below:

A =

[
1 2 3
4 5 6

]
rref(A) =

[
1 0 −1
0 1 2

]
(a) Is A full rank? If so, what is its rank?

SOLUTION: Yes, A is full rank with a rank of 2.

(b) What is the dimension of the four fundamental subspaces?

SOLUTION: Using the rank, the dimensions of the row space and column space are both 2. The
dimension of the null space is 1. The dimension of the null space of AT is 0.

(c) Find a basis for each of the fundamental subspaces (without the SVD).

SOLUTION:

For the row space, use the rows from the row reduced matrix:
 1

0
−1

 ,
 0

1
2


For the null space, solve Ax = 0. In this case, we already have the RREF(A), so we just need to
read off the answer (to check yourself, the vector should be orthogonal to the row space).

 1
−2

1


For the column space, we would typically use the columns from the matrix A. In this case, notice
that the column space takes up all of IR2, so you could use any basis for IR2, including the standard
basis. However, some of you may mistake that for a rule, so I’ll use the columns that we would
typically use- The pivot columns from the original matrix.{[

1
4

]
,

[
2
5

]}
The null space of AT will then contain only the zero vector: {0}. This isn’t really a basis, though,
since the zero vector is not linearly independent (and having dimension zero means that there
isn’t a basis vector).

2. In words, describe how we determine the rank of a matrix (using the SVD).

SOLUTION: Theoretically, the rank is determined by the number of non-zero singular values. In
practice, we choose the number of singular values that are greater than some small tolerance level (like
1e-10 or something similar).
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3. Below is a matrix A. To save you some time, I’ve also included ATA, some eigenvalues of ATA and
the matrix AAT .

A =

 2 −2
0 0
2 −2

 ATA =

[
8 −8
−8 8

]
, (λ1,2 = 0, 16), AAT =

 8 0 8
0 0 0
8 0 8


(a) Find the full SVD of A, by hand:

SOLUTION: Since we have the eigenvalues, we just need the eigenvectors:

For λ = 16,

(ATA− λI) =

[
−8 −8
−8 −8

]
⇒
[

1 1
0 0

]
⇒ v =

[
−1

1

]
Since we’re in IR2 and the eigenvectors are orthogonal, the one for λ = 0 is

[
1
1

]
. Furthermore,

we know that Av is a non-normalized eigenvector for λ = 16: so

u = Av =

 2 −2
0 0
2 −2

[ −1
1

]
=

 −4
0
−4


so we’ll take that as (1

√
2)(−1, 0,−1). Lastly, just need the eigenvectors for λ = 0 in AAT .

Reducing the matrix: 8 0 8
0 0 0
8 0 8

→
 1 0 1

0 0 0
0 0 0

 ⇒
x1 = −x3

x2 = x2

x3 = x3

⇒

 −1
0
1

 ,
 0

1
0


We have all the information we need now: 2 −2

0 0
2 −2

 =
1√
2

 −1 −1 0
0 0 1
−1 1 0

 4 0
0 0
0 0

 1√
2

[
−1 1

1 1

]T
Note: I recommend finding the u’s by taking Av’s because, while any scalar multiple of an
eigenvector is an eigenvector, the signs of u’s and v’s need to match up. For example, if I had
taken u = (1/

√
2, 0, 1/

√
2), then UΣV T would be −A instead of A.

(b) Compute the pseudo-inverse of A, by hand:

SOLUTION: You can leave it factored, or multiply it out. Using the reduced SVD,

V Σ−1UT =

(
1√
2

[
−1

1

])(
1

4

)(
1√
2

[−1, 0,−1]

)
=

1

8

[
1 0 1
−1 0 −1

]
Remarks: You might notice that A†A is not the identity. What does it represent? (Hint: The
“solution” to Ax = b is given by x̂ = A†b, and notice that Ax̂ = AA†b and may not equal b).

To specifically answer the question, A†A is a projection to the row space of A, and AA† is a
projection to the column space of A (these are easier to see if you write A,A† in terms of U,Σ, V ).

4. (Calculator, or by hand) Use two steps of the bisection algorithm on f(x) = x2 − 2 on the interval
[0, 1]. Be sure you follow the steps.

SOLUTION: TYPO: Interval should be [0, 2] since the solution is
√

2 > 1.

• Check that f(0)f(1) < 0: f(0) = −2 < 0, f(2) = 2 > 0.

• Let c = (0 + 2)/2 = 1. Then f(1) = −1 < 0, and the new interval is [1, 2].
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• Let c = (1 + 2)/2 = 3/2. Then f(3/2) = 0.25 > 0, and the new interval is [1, 3/2].

5. (Calculator, or by hand) Use two steps of Newton’s Method on f(x) = x2 − 2 with x0 = 1.

SOLUTION: Not necessary, but we might simplify the expression first to make the computations easier:

xi+1 = xi −
f(xi)

f ′(xi)
= xi −

x2
i − 2

2xi
=

1

2
xi +

1

xi

• x1 = 1
2 + 1 = 3

2

• x2 = 1
2

3
2 + 2

3 = 17
12

Side remark: Note that 17/12 ≈ 1.4167 and
√

2 ≈ 1.4142, so we’re already very close.

6. Given vector a = [1, 1, 1]T , find the projection matrix P so that Px is the orthogonal projection of x
onto a.

SOLUTION: Let U = 1√
3
a. Then the projection is UUT , or

1

3

 1 1 1
1 1 1
1 1 1


7. Show that Null(A) ⊥ Row(A).

SOLUTION: This is really all based on how we compute Ax. In performing this multiplication, the
end result is the dot product between each row of A and the vector x. Therefore, if Ax = 0 (so that
x ∈ Null(A)), then x must be orthogonal to every row of A, and so it will be orthogonal to any linear
combination of the rows of A. This argument also goes in reverse: If x is orthogonal to every row of
A, then Ax = 0, so that x must be in the null space.

8. Let

U =
1√
2

 1 −1
1 1
0 0

 , x =

 1
3
2


Find [x]U . Find the projection of x into the subspace spanned by the columns of U . Find the distance
between x and the subspace spanned by the columns of U .

SOLUTION: We have three parts-

• TYPO: Did you notice that x is not contained in the span of the first two columns? Therefore,
the coordinates are not defined. HOWEVER, we can find the coordinates of the projection of
x to the column space spanned by the first two columns of U , and in that case:

The coordinates of x with respect to U is given by UTx = (1/
√

2)(4, 2)

• To find the projection, we could either compute UUTx, or since we already have UTx, use the
previous problem to get:

Proj(x) = 2

 1
1
0

+

 −1
1
0

 =

 1
3
0


And notice that that is the projection of x to the xy−plane.
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• The distance between x and the projection of x is similar to our error function in the best basis
(that’s why we compute it here). It’s easy in this case:

‖x− Proj(x)‖ = ‖

 0
0
2

 ‖ = 2

9. True or False, and give a short reason:

(a) If the rank of A is 3, the dimension of the row space is 3.

SOLUTION: TRUE. The rank is the dimension of the column space, which is the number of pivot
columns of a matrix. That is the same as the number of pivot rows of A, which is the dimension
of the row space.

(b) If the correlation coefficient between two sets of data is 1, then the data sets are the same.

SOLUTION: FALSE, however there is a “positive” linear relationship between the two (positive
meaning positive slope).

(c) If the correlation coefficient between two sets of data is 0, then there is no functional relationship
between the two sets of data.

SOLUTION: FALSE. To make the statement true, there is linear relationship between the two
sets of data.

(d) If U is a 4× 2 matrix, then UTU = I.

SOLUTION: False in general, but if U has orthonormal columns, it is true (I meant it that way).

(e) If U is a 4× 2 matrix, then UUT = I.

SOLUTION: False in general and if U has o.n. columns. In the later case, UUT is a projection
matrix to the column space of U .

(f) If A is not invertible, then λ = 0 is an eigenvalue of A.

SOLUTION: Assuming A is square, then yes (otherwise, false). That’s because det(A) = 0 means
that det(A− 0I) = 0.

(g) Let

A =

 1 0
1 1
2 0


Then the rank of AAT is 2.

SOLUTION: True. The reason is that the rank of A is 2 (the columns are not multiples of each
other), and the rank of A is the same as the rank of AAT . (Think about the number of singular
values in A versus the number of non-zero eigenvalues of AAT ).

10. Let v1,v2, . . . ,vn be the normalized eigenvectors of ATA, where A is m× n.

(a) Show that if λi is a non-zero eigenvalue of ATA, then it is also a non-zero eigenvalue of AAT .

SOLUTION: Let v be an eigenvector associated with λi. Then:

ATAv = λiv ⇒ AATAv = λiAv ⇒ AATu = λiu

(b) True or false? The eigenvectors form an orthogonal basis of IRn.

SOLLUTION: True by the Spectral Theorem; they can be selected so that they form an orthonor-
mal basis of IRn.
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(c) Show that, if x ∈ IRn, then the ith coordinate of x (with respect to the eigenvector basis) is xTvi.

SOLUTION: First, let
x = c1v1 + · · ·+ cnvn

and now dot both sides of the equation with vi. On the right, most terms will be zero because
the vectors v are orthogonal to each other. This gives us:

x · vi = 0 + 0 + · · ·+ civi · vi + 0 + · · ·+ 0

Therefore, the ith coordinate of x is given by

ci =
x · vi

vi · vi

(d) Let α1, . . . , αn be the coordinates of x with respect to v1, . . . ,vn.

Show that (TYPO: The subscript 2 should be an exponent, corrected below)

‖x‖2 = α2
1 + α2

2 + . . .+ α2
n

I’ll allow you to show it just using just two vectors, v1,v2.

SOLUTION: Using the pair,

‖x‖2 = x · x = (α1v1 + α2v2) · (α1v1 + α2v2) = α2
1‖v1‖2 + α2

2‖v2‖2 + 2α1α2v1 · v2

By orthogonality of the vectors, and assuming that ‖vi‖2 = 1, we get the anser:

‖x‖2 = α2
1 + α2

2

(e) Show that Avi ⊥ Avj

SOLUTION: We use the fact that the v’s are eigenvectors of ATA. Now:

(Avi)
T (Avj) = vT

i A
TAvj = λjv

T
i vj = 0

by the orthogonality of v’s.

(f) Show that Avi is an eigenvector of AAT .

This is shown in part(a).

11. (SVD) Given that the SVD of a matrix was given in Matlab as:

>> [U,S,V]=svd(A)

U =

-0.4346 -0.3010 0.7745 0.3326 -0.1000

-0.1933 -0.3934 0.1103 -0.8886 -0.0777

0.5484 0.5071 0.6045 -0.2605 -0.0944

0.6715 -0.6841 0.0061 0.1770 -0.2231

0.1488 -0.1720 0.1502 -0.0217 0.9619

S =

5.72 0 0

0 2.89 0

0 0 0

0 0 0

0 0 0

V =

0.2321 -0.9483 0.2166

-0.2770 0.1490 0.9493

0.9324 0.2803 0.2281
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(a) Which columns form a basis for the null space of A? For the column space of A? For the row
space of A?

SOLUTION: First, the size of A and the size of S (or Σ) are the same in the full SVD. Therefore,
we know that the row space and null space are vectors in IR3 (and the column space and null space
of AT are in IR5). Since we have two non-zero singular values, the rank of A is 2, and therefore,
the third column of V gives a basis for the null space of A.

The first 2 columns of U form a basis for the column space of A, and the first two columns of V
form a basis for the row space.

(b) How do we “normalize” the singular values? In this case, what are they (numerically)?

SOLUTION: We normalized singular values (or eigenvalues) by dividing by their sum. In this
case, 8.61. This gives:

5.72

8.61
≈ 0.66

2.89

8.61
≈ 0.34

(c) What is the rank of A?

SOLUTION: It is the number of non-zero singular values of A, which we determined in part (a)
to be 2.

(d) How would you compute the pseudo-inverse of A (do not actually do it):

SOLUTION: In Matlab notation, V(:,1:2) * (diag(1./diag(S))) * U(:,1:2)’

(e) Let B be formed using the first two columns of U . Would the matrix BTB have any special
meaning? Would BBT ?

SOLUTION: BTB would be a 2× 2 identity matrix. BBT would be a projection matrix (to the
column space of U).

12. Define a “voronoi cell” and its relation to data clustering.

SOLUTION: A voronoi cell is defined by its centers, c1, . . . , ck. Then the jth voronoi cell is the set of
x that is closer to cj than any other center- Or,

Vj = {x | ‖x− cj‖ ≤ ci, for i = 1, 2, . . . , k}

Points that lie along the boundary may be left unclassified, or randomly assigned to bordering cells.

13. What is the basic update rule we use for all our parameters? Hint: We want to go from αinitial to αfinal

in some number (MaxIters) of steps.

SOLUTION: This actually goes back a ways to the n−armed bandit. We said that at step i:

αi = αinit

(
αfinal

αinit

) i
MaxIters

14. Explain the roles that ε and λ play in the Neural Gas algorithm.

SOLUTION: We said that ε was the maximum amount of “attracting” force, and λ controlled the
spread of the attracting force. Thus, at the beginning of training, ε and λ are relatively large, and
decrease as training progresses.

15. Show that, for all numbers µ, the value that minimizes the (squared) distortion error for a single cluster
is the (arithmetic) mean. You may assume your data is one dimensional, and that you have only one
cluster.

SOLUTION: If our one dimensional data is given as x1, x2, . . . , xp, then the sum of squares distortion
error is

E(µ) =

p∑
k=1

(xk − µ)2
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To minimize E, differentiate and set the derivative to zero (find the critical points):

dE

dµ
=

p∑
k=1

2(xk − µ)(−1) = 0 ⇒
p∑

k=1

xk − µ
p∑

k=1

1 = 0 ⇒
p∑

k=1

xk = µ p

Therefore, the critical point is when

µ =
1

p

p∑
k=1

xk

which is the arithmetic average. Further, if we take the second derivative,

d2E

dµ2
= 2p > 0

Therefore, we have a minimum and not a maximum.

16. TYPO: Should have specified this is k-means. Here are 5 points in the matrix X. Initialize the
two centers as the first two columns of X, then perform 1 update, and show there is a decrease in the
distortion error.

X =

[
−1 1 1 −2 −1

1 0 2 1 −1

]
SOLUTION: As a computational note, it is easier to find the squared distances, and the order will
remain the same. The EDM of squared distances is

0 5
5 0
5 4
1 10
4 5

 ⇒ Cluster 1: 1, 4, 5
Cluster 2: 2, 3

⇒ C =

[
−4/3 1

1/2 1

]

It takes a little while to compute, but the new EDM shows that the classifications do not change, and
the new distortion errors (squared) are approximately:

0.55, 1.0, 1.0, 0.88, 1.88

We can see that the overall distortion error has decreased.

17. Given the data vector x below and the three centers in C, update the set of centers using Neural Gas,
with ε = λ = 1 (not realistic, but since we’re doing it by hand, we’ll use easy numbers).

x =

[
1
2

]
C =

[
−1 1 2

1 0 3

]
SOLUTION: First we need the distances between x and the three centers. In order, we have:

√
5, 2,
√

2,
therefore, the third center is closest, and in the notation employed by our text, we have

s3 = 0 s2 = 1 s1 = 2

Now update the centers by the index:

c3 =

[
2
3

]
+ 1

[
1− 2
2− 3

]
=

[
1
2

]
c2 =

[
1
0

]
+ e−1

[
1− 1
2− 0

]
=

[
1

2/e

]
c1 =

[
−1

1

]
+ e−2

[
1−−1
2− 1

]
=

[
−1 + 2/e2

1 + 1/e2

]
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18. In the DBSCAN algorithm, is there a difference between indirectly density-reachable and density-
reachable?

These topics are important because they tell us how DBSCAN creates clusters: “A cluster is the set
of all points that are density-reachable from a (arbitrary) core point p”.

SOLUTION: No, although there is a difference between directly density-reachable: Point q is directly
density-reachable from p if p is a core point and q is within the ε neighborhood of p. If we drop the
word “directly”, then we can have a chain of intermediate points taking us from one point to the other.

19. Give a summary of the DBSCAN algorithm.

SOLUTION: We just start with a random point in the set:

• Has it been classified? If not, then check if it is a core point.

• If the point is a core point, we now have a new cluster- Collect all the points density-reachable to
the point.

Otherwise, classify the point as noise.

20. Describe a situation where DBSCAN would work very well.

SOLUTION: We saw a couple of great examples in the text and homework- One of them was the
interlocking rectangles with some scattered point (pg 97). In the homework, we had that data set with
interlocking horsehoes. These sets have complex shapes.

21. Describe a situation where DBSCAN would work very poorly.

SOLUTION: There’s an example in the text (p. 97), but also when the data has a single overall shape-
like the clustering we found using Neural Gas. In fact, it wouldn’t work at all if you required some
kind of cluster centers to be produced from the algorithm (like if you were reducing the number of
points in your set).

22. Illustrate the technique of gradient descent using

f(x, y) = x2 + y2 − 3xy + 2

(a) Find the critical point.

SOLUTION: Set the gradient equal to zero. In this case, we have only (0, 0).

(b) Use the initial point (1, 0) and find the optimal step size, then compute the next point.

SOLUTION: The gradient at (1, 0) is 〈2,−3〉, so the line we’re using is[
1
0

]
− h

[
2
−3

]
=

[
1− 2h

3h

]
Substituting x = 1− 2h, y = 3h into f(x, y) (this means we’re restricting f to the line), we get

φ(h) = 13h2 − 13h+ 3 ⇒ φ′(h) = 0 ⇒ h ≈ 0.21

That puts our new point at: [
1− 2h

3h

]
≈
[

0.58
0.62

]
(c) Classify the critical point by considering the eigenvalues of the Hessian (compute the Hessian and

the eigenvalues).

The Hessian in Matlab is [2,-3;-3,2] , and it has eigenvalues 5,−1. Because they are mixed in
sign, the point (1, 0) is a saddle point.

8



23. What’s the difference between gradient descent and stochastic gradient descent? (Be specific).

We’ll assume that the error function has a large sum (like sum of squares error), and typically that sum
is taking place over the points you have. Then the gradient will involve the full sum, but in stochastic
gradient descent, we will be estimating the gradient using a single point.

24. Consider the table of data below, where we want to find a line of best fit.

x −1 1 2 3
y 0 1 3 2

(a) Write down the full error function (that depends on m, b).

SOLUTION:

E(m, b) = (0− (m(−1) + b))2 + (1− (m+ b))2 + (3− (2m+ b))2 + (2− (3m+ b))2

(b) Write down the full gradient.

SOLUTION:

∂E

∂m
= 30m+ 10b− 26,

∂E

∂b
= 10m+ 8b− 12

(c) Describe how we implement stochastic gradient in this problem.

SOLUTION: We would only use a single point as an estimate. For example, using point 2, the
error estimate would be (1 − (m + b))2, so then the gradient is Em = 2(1 − m − b)(−1) and
Eb = 2(1−m− b)(−1).
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