
The S-I-R Model for Spread of Disease1

We divide the population into three groups:

• Susceptible individuals (“susceptibles”), S(t)

• Infected individuals, I(t).

• Recovered individuals, R(t).

We first assume that only susceptible indivduals become infected, and only individuals
that have been infected become recovered. That is, we assume a certain “flow” of the
population:

Other Model Assumptions

• Population size is large and constant, N . Therefore, for every time t,

S(t) + I(t) +R(t) = N

• The last thing means that we are not taking into account any births, deaths, immigra-
tion or emigration.

• No latent period (immediately go from one class to the other).

• Homogeneous mixing.

• Infection rate is proportional to the fraction of infected:

λ = β
I

N

• Recovery rate is constant, γ.

1Notes from Jan Medlock, Clemson
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The ODEs

dS

dt
= −λS(t)

dI

dt
= λS(t)− γI(t)

dR

dt
= γI(t)

Using the 5th assumption, we can rewrite these equations as:

dS

dt
= −β I

N
S(t) (1)

dI

dt
= β

I

N
S(t)− γI(t) (2)

dR

dt
= γI(t) (3)

We note that assumption 1 (Population is large and constant and equal to N) really
makes the equation for R irrelevant, so that we could simply write:

dS

dt
= −β I

N
S(t)

dI

dt
= β

I

N
S(t)− γI(t)

R(t) = N − S(t)− I(t)

A Discussion of Parameters

The value of γ represents the average period of infectiousness. For example, if the period is
three days, that would suggest that γ = 1/3. Similarly, β is a rate of infection in the sense
that, if an infected person generally makes an infecting contact every two days, then that
would suggest β = 1/2.

An important quantity: R0

We may note that at the beginning of the epidemic, the susceptible population is the en-
tire population (S(t) ≈ N), so that the rate of change of the infected population is then
approximately

dI

dt
≈ (β − γ)I(t)

Therefore, if β − γ > 0, I(t) increases.
You may have noted a tremendous amount of news coverage of the model parameter R0,

which is the basic reproductive number, which is defined as:

R0 =
β

γ
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With our previous observation, if R0 > 1, then I(t) increases, and we have an epidemic.
Here are some values of R0 for several diseases:

Disease R0

Measles 12-18
Chickenpox 10-12
Polio 5-7
COVID-19 3.3-5.7
Common Cold 2-3
Ebola 1.5-1.9
Seasonal Flu 0.9-2.1

Numerical Solvers for SIR

If we use a numerical solver for the SIR model, we’ll get solution curves that generally look
like the following:

In the current pandemic, a popular saying early on was that we needed to lower the
curve- In this case, it would be to take out the local maximum, and instead have something
that goes straight towards zero. (We’ll experiment with this a bit in the exercises).

Linearization and SIR

If we look at only the first two equations (since R(t) is determined from those), then

dS

dt
= −β I

N
S = 0 (4)

dI

dt
= β

I

N
S − γI = 0 (5)

This gives two equilibria: (S, I) = (N, 0) and (S, I) = (0, 0). The first is disease-free
equilibrium, and the second is after the pandemic when R = N .

We should find that, after linearizing about (N, 0), the Jacobian matrix is given by[
0 −β
0 β − γ

]
⇒ λ = 0, β − γ
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Homework Questions

1. Show that, if we define:

s(t) = S(t)/N, the susceptible fraction of the population,

i(t) = I(t)/N, the infected fraction of the population, and

r(t) = R(t)/N, the recovered fraction of the population.

then we can change the differential equations: (Matlab code given also)

ds

dt
= −β s i

di

dr
= β s i − γ i

dr

dt
= γ i

function dy=SIREqns(t,y)

beta=1/2; gamma=1/3;

dy=zeros(size(y));

dy(1)=-beta*y(1)*y(2);

dy(2)=beta*y(1)*y(2)-gamma*y(2);

dy(3)=gamma*y(2);

2. Experimenting with parameters: In this question, set up the DE solver to solve the
SIR model using the percentages in the previous question, and create a file, SIREqns.m
that contain the differential equations. Then you can use ode23 to experiment with
the numerical solutions.

(a) Keep γ = 1/3, and plot the graph of i(t) with several different values of β ranging
between 0.5 and 2.0. Comment on what you see.

(b) Keep β = 1/2, and plot the graph of i(t) with several different values of γ between
0.1 and 0.6. Comment on what you see.

(c) There is a change in the character of the graph of i(t) near one end of the suggested
range for γ in the previous experiment. What is the change, and where does it
occur?

(d) Could we have predicted the change discussed in the previous problem?

3. Show that the linearized system gives the Jacobian matrix shown.

4. Solve the linearized system about the point (N, 0):

dS

dt
= −βI

dI

dt
= (β − γ)I

(Hint: Solve for I first).
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