Backpropagation Worksheet

Suppose we have the 1-2-2 network as shown below, and we'll define the transfer function as $\sigma(x) = \text{ReLU}(x)$. Numerically compute each value below going through a forward pass, then go through the backward pass to compute Δ at each node.

Numerically compute each value except for Δ , given that x = 1. For the backward pass, you may assume our targets are also both $t_1 = t_2 = 1$. Finally, compute $\Delta W_{jk}^{(i)}$ for each weight.

1. Node A	5.	$\Delta W_{11}^{(1)} =$
 Prestate: State: Design (1/(D)) 	6.	$\Delta W_{21}^{(1)} =$
• Derivative $(\sigma'(P))$: • Δ	7.	$\Delta W^{(2)}_{11} =$
Node B Prestate: State:	8.	$\Delta W^{(2)}_{21} =$
 State: Derivative: 	9.	$\Delta W^{(2)}_{12} =$
• Δ 3. Node C	10.	$\Delta W^{(2)}_{22} =$

- Prestate:
 - State:
 - Derivative:
 - Δ

4. Node D

- Prestate:
- State:
- Derivative:
- Δ