Addition: K-means in Matlab (2018 version)

In the k-means algorithm, we're interested in getting the cluster centers and distortion error
as well as the cluster indices for each input point. Matlab has several versions of calling the
function.

The data in matrix X is input as “number of points by dimension”. The basic function
call is given as the following. The output vector gives the cluster index of each data point.

idx=kmeans (X,k) ;

We usually want to track some measures of how good the clustering is, and we’ll normally
want to store the cluster centers as well. In that case, we can output the cluster centers and
the individual distortion errors (DistErr is a vector with k values).

[idx,Centers,DistErr]=kmeans (X,k)

There are some other interesting additions to the kmeans command. As you train, you
might notice that the distortion error that you end up with often depends on how the centers
are initialized. A good practice is to initialize the algorithm several times so that you can
both track the distortion error and choose the best arrangement. Matlab has this built-in
as the “Replicates” option. Also, if we want to display the results as we train, we can set
that option as well:

opts=statset(’Display’,’final’);
[idx,C,disterr]=kmeans(X,k, ’Replicates’,5,’0Options’,opts)

New in Matlab’s Algorithm

There are several new additions to the basic algorithm that have been added over the last
few years.

e There are two phases now for clustering- The first phase is as described (Matlab calls it
batch training), and there is now a second phase (online) that re-assigns each individual
point to a new cluster if that re-assignment will lower the distortion error.

You do get a better clustering in terms of the distortion error, but this can be time
consuming if you have a large data set.

Matlab defaults to the online phase being “off 7. To turn it “on”, we would use the
pair: ’Online Phase’,’on’ in the k-means command. For example,

[idx,C,disterr]=kmeans(X,k, ’OnlinePhase’,’on’);

e The “k-means++" algorithm to initialize the cluster centers, and this is now Matlab’s
default method. The algorithm uses a heuristic to choose cluster centers with certain
probabilities:

1. Choose c; uniformly at random from the data.
2. Compute distances between the data and ¢y, d(z,,, ¢1).

3. Now we compute a probability for each x,, € X: Select c; at random from X
with probability (m =1,2,---,p)

d*(zp, 1)
SN
Zd (zj,c1)
Jj=1

4. We'll select each subsequent center from the data with a probability that is pro-

portional to the distance from itself to the closest centroid. For m = 1,2,---,p
and r =1,2,---,k — 1, choose center ¢, at random from X with probability:
d*(Tm, ¢r)
Z d*(zp, c,)
{h:zp€cr}

e To start by selecting k points at random from X, we would use the option pair:
’Start’,’sample’ (the example below uses this option).

Sample Training Session
Using the iris data, we give a short training session below.

load fisheriris;
X=meas; %X is 150 x 4

opts=statset(’Display’,’final’);
[idx,C,disterr]=kmeans(X,3, ’Replicates’,5,’Start’,’Sample’,’Options’,opts);
plot(idx,’.’);

Exercise: Image segmentation

In the image segmentation problem, given an image, we want to extract the regions that are
distinct colors or objects. Consider the following example, where we examine the petals of
a flower sample.

Before we look at the clustering algorithm, it might be helpful to look at the photo
and look at how the colors are stored. Be sure you’ve downloaded the photo from the class
website. Click on the “Apps” tab, then find the “Color Thresholder”. You’ll see an option to
“Load Image”. Select that, and find the image you downloaded. You should see something
like Figure 3. Select the L*a*b color space.

Figure 1: The original image. Our goal is to pull apart the colors: Yellows, reds, versus
background.

Finally, we want to use the sliders to the right (see Figure ??). See if you can isolate the
red colors (sample solution shown).

We’ll now perform k-means clustering on our image and show that it does a pretty good
job. Here are the steps for the homework:

1.

Load the image, and convert the image from RGB to L*a*b.

X=load (’P355F1. jpg’); %X is a uint8 matrix
Y=rgb2lab(X);

Next, strip away the L values- we’ll cluster only using “a” and “b” values (the last two
“columns” of the third dimension). What would the Matlab command be for that?

Currently, we have an array that is m x n x 2. We will convert that (using the reshape
command) into a matrix that is mn x 2, then we’ll cluster using that matrix. Hint:
Keep track of the current values of m and n!

Cluster the data, and have Matlab output the cluster indices in an mn x 1 vector.

Visualize the clusters by reshape back into an m X n matrix, then use imagesc to
show the results.

Color Thresholder - Choose a Color Space
THRESHOLD

Background Color: Zeomiy Hide Point Cloud
& 2 | E 2 B amee B :
_ LoadImage Mew Color Space InvertMask Reset Background Opacity: Show Binary Live Update| Background: @——— Export
E Thresholds L) Pan <
LOADIMAGE | COLOR SPACES MODIFY Sk view mask 200MAND PAN | LIVE UPDATE POINT CLoD ExporT

M
—-—

Choose a Color Space

—

RGB

B == = -

Figure 2: This is the Color Threshold dialog box, with the image loaded. You can try looking
at different color representations this way:.

Color Thresholder - L*a*b*
THRESHOLD

& L1 E 2 a0 -

~ Loadimage New ColorSpace InvertMask Reset Background Opacity ———@ Show Binary
- Thresholds Pan

@ Zoom in

Background Color: [l Hide Paint Cloud

ste| Background: @——— Export F

LOAD IMAGE_| _ COLOR SPACES MODIFY MASK VIEW MASK Z00MAND PAN_| LIVE UPDATE POINT CLOUD ExpoRT =
Larb+

%="10/25/2018 05127154 PM =%

Figure 3: In the L*a*b color space, we can adjust the sliders to see if its possible to isolate
the colors. Shown is one possible solution.

