
Optimization in Matlab (manually)

In these notes, we look specifically at the Matlab code that we will write to perform basic
optimization. To do that, first we look at how Matlab deals with functions.

How to deal with Functions

As in mathematics, in programs, a function is an operation that takes in values (arguments),
performs some operations on those values, and outputs values. Unlike in mathematics, in a
program, a function can output more than one “y-”value.

There are several ways of writing functions in Matlab- We’ll look at two of them.

Function in an M-file

We’ve already seen how to write a short Matlab function using a text editor. For example,
let’s write a function (call it “MyFunc”) that will take in two values, say a and b and will
output the distance between the numbers, as well as the center between them. Here is what
we would type:

function [distance,center]=MyFunc(a,b)

% It is always good to include comments about the inputs and

% outputs of the function- you might forget!

% function [distance,center]=MyFunc(a,b)

% Input: Two numbers a and b

% Output: distance is the length between the numbers.

% center is the center point between the numbers.

distance=abs(b-a);

center=(a+b)/2;

end %This is optional, but a good idea.

Now save this file as MyFunc.m, and in the directory or search path for this function, we
can call it. For example, in the command window I can type:

[C,D]=MyFunc(3,6);

The value stored in C will be 3 and the value stored in D will be 4.5.

An Anonymous Function

If you have a function with only one output, you might write it as an anonymous function.
Here’s a quick example, with inputs a and b and output being the average:

1



MyAvg = @(a,b) (a+b)/2;

Now typing MyAvg(3,6) should return the value 4.5. Even though we cannot formally
have an anonymous function have more than one output, we can get around that.

Here’s an example, where we define the anonymous function as our previously written
function, MyFunc.m:

MyFunc2 = @(x,y) MyFunc(x,y);

Now in the command window, we can type: [C,D]=MyFunc2(3,5);, and you’ll see that
C = 2 and D = 4.

Passing a Function to a Function

In a numerical algorithm like the bisection method, we would want to pass a function into
the algorithm so that the bisection algorithm can work for any function.

Here’s an example. We’ll define a function f , and we’ll pass it into a function defined by
an M−filel, then we’ll call that function and see what happens.

First, use a text editor or Matlab’s built-in editor to type our main function (like the
bisection algorithm). Here’s a short program that should take in a function f , and one value
of x, then output f(x) and f(2):

function [y1,y2]=SampleFunc(f,x)

y1=f(x); % This is regular function notation!

y2=f(2); % This is just to get a 2d output

end

Save this as SampleFunc.m. Now define a function f in the command window or script file:

f = @(x) x^2-1;

To actually call our function, we would now type:

[C,D]=SampleFunc(f,0)

Then C = −1 and D = 3.

When the argument function is an m-file

When the function that is being passed into another function is written as an m-file (rather
than as an anonymous function, we’ll call it using the @ symbol.

For example, if I have a function file saved as parab.m and I want to use the bisection
method on it (bisect.m, defined below), I would either type this in in the command line or
in a script file:

yOut=bisect(@parab,1,3,1e(-6)); %Note: 1e(-6) is 10^(-6)

Now we’re ready to work with functions in our programs. First up will be the bisection
algorithm. The inputs should be a function, together with two numbers a, b so that the zero
of the function is in the interval [a, b].

2



The Bisection Algorithm

function xc=bisect(f,a,b,tol)

% Bisection Method, xc=bisect(f,a,b,tol)

% Computes an approximation to f(x)=0 given that the

% root is bracketed in [a,b] with f(a)f(b)<0. Will run

% until TOL is reached, and will output the solution xc.

%

% EXAMPLE: f=@(x) x^3+x-1;

% xc=bisect(f,0,1,5e-5);

% Output:

% Finished after 14 iterates

% xc=0.6823

%Error check and initialization:

fa=f(a); fb=f(b);

if sign(fa)*sign(fb)>=0

error(’Root is not be bracketed’);

end

iter=0;

while (b-a)/2>tol

iter=iter+1;

c=(a+b)/2;

fc=f(c);

if fc==0 %This means that (a+b)/2 is the root-

break %Break out of the while loop and

%continue execution

end

if sign(fc)*sign(fa)<0 %New interval is [a,c] (reset b)

b=c; fb=fc;

else

a=c; fa=fc; %New interval is [c,b] (reset a)

end

end

fprintf(’Finished after %d iterates\n’,iter);

xc=(a+b)/2;

end

The nice thing about the bisection method is that it is easy to implement. It takes a lot
of iterations to converge, however. That leads us to Newton’s Method. We’ll have two forms
- one for the “calc 1” version, and the other will be the multidimensional version.

3



Newton’s Method part I

There’s an example in the code to run. First, we’ll need an m-file to hold the function that
we’re working with. Remember that we need to output both the function value and the
value of the derivative. The following file would be saved as MyFunc.m.

function [y,dy]=MyFunc(x)

y=x^3+x-1;

dy=3*x^2+1;

end

Now save the code below as NewtonMethod.m

function out=NewtonMethod(F,x0,numits,tol)

for k=1:numits

[g,gprime]=F(x0);

if gprime==0

error(’Derivative is zero’);

end

xnew=x0-g/gprime;

d=abs(xnew-x0);

if d<tol

out=xnew;

break

end

x0=xnew;

end

fprintf(’Newton used %d iterations\n’,k);

out=xnew;

end

And, as shown in the code, we can run an example by typing the following into the
command window:

yout=NewtonMethod(@MyFunc,0,100,5e-5)

Multidimensional Newton’s Method

In multidimensional Newton’s Method, we’ll assume that we have a function f for which
we’re trying to determine the roots of the gradient,

∇f(x) = ~0

In that case, the function file for f should actually output three items:

4



• f(x) (which is a real number)

• ∇f(x) (which is a vector)

• Hf(x), or the Hessian of f , which is a matrix of all of the second derivatives of f :

(Hf(x)ij =
∂2f

∂xi∂xj

(x)

Here’s the code for that=

function out=MultiNewton(F,x0,numits,tol)

for k=1:numits

[g,gradg,hessg]=F(x0);

if cond(hessg)>1000000

error(’The Hessian Matrix is not invertible’);

end

xnew=x0-inv(hessg)*gradg;

d=norm(xnew-x0);

if d<tol

out=xnew;

break

end

x0=xnew;

end

fprintf(’Newton used %d iterations\n’,k);

out=xnew;

Here’s a quick example. First, the function file:

function [y,dy,hy]=testfunc(x)

% A test function for Newton’s Method:

% The input is the VECTOR x (with elements x,y below)

%

% y = (1/4)x^4-(1/2)x^2+(1/2)y^2

% dy = Gradient = [x^3-x; y] (The gradient will output as a COLUMN)

% hy = Hessian = [3x^2-1, 0;0,1]

y=(1/4)*x(1)^4-(1/2)*x(1)^(2)+(1/2)*x(2)^2;

dy=[x(1)^3-x(1); x(2)];

hy=[3*x(1)^2-1, 0;0,1];

Now the function call would be something like

yout=MultiNewton(@testfunc,[-3;2],100,1e-6);

And the output will be: “Newton used 8 iterations”, and yout would be (−1, 0).

5


