Review questions, Chapter 6

1. Find the Laplace transform of the solution the heat equation:

$$
\begin{aligned}
& u_{t}=u_{x x}, \quad x>0, t>0 \\
& u(x, 0)=0 \\
& u(0, t)=1 \\
& \lim _{x \rightarrow \infty} u(x, t)=0, \quad t>0
\end{aligned}
$$

2. Use the Laplace transform to solve the problem:

$$
\begin{aligned}
& u_{t}+2 u_{x}=0, \quad x>0, t>0 \\
& u(x, 0)=3 \\
& u(0, t)=5
\end{aligned}
$$

3. Use the Laplace transform to solve the wave equation for the transformed solution.

$$
\begin{aligned}
& u_{t t}=9 u_{x x}, x>0, t>0 \\
& u(x, 0)=0 \\
& u_{t}(x, 0)=0 \\
& u(0, t)=f(t) \\
& \lim _{x \rightarrow \infty} u(x, t)=0
\end{aligned}
$$

4. Use the Laplace transform to find the transform of the solution to:

$$
\begin{aligned}
& u_{t}=u_{x x}, \quad x>0, t>0 \\
& u(x, 0)=0 \\
& u_{x}(0, t)=1 \\
& \lim _{x \rightarrow \infty} u(x, t)=0, \quad t>0
\end{aligned}
$$

5. Compute the Fourier sine and cosine transform of $\mathrm{e}^{-c x}$. Hint: You can do them both at once.
6. Find an expression for the Fourier sine transform of $f^{\prime}(x)$.
7. Find an expression for the Fourier cosine transform of $f^{\prime \prime}(x)$.
8. Find the transform of the solution (you need to choose sine or cosine) to:

$$
\begin{aligned}
& y^{\prime \prime}-y=\mathrm{e}^{-2 x}, \quad x \geq 0 \\
& y(0)=1 \\
& \lim _{x \rightarrow \infty} y(x)=0
\end{aligned}
$$

9. Find the transform of the solution (you need to choose sine or cosine) to:

$$
\begin{aligned}
& u_{t}=u_{x x}, \quad x>0, t>0 \\
& u(x, 0)=f(x) \\
& u(0, t)=0 \\
& \lim _{x \rightarrow \infty} u(x, t)=0
\end{aligned}
$$

10. Find the transform of the solution (you need to choose sine or cosine) to:

$$
\begin{aligned}
& y^{\prime \prime}-y=3 \mathrm{e}^{-4 x}, \quad x \geq 0 \\
& y^{\prime}(0)=0 \\
& \lim _{x \rightarrow \infty} y(x)=0
\end{aligned}
$$

11. Find the transform of the solution (you need to choose sine or cosine) to:

$$
\begin{aligned}
& u_{t}=u_{x x}, \quad x>0, t>0 \\
& u(x, 0)=f(x) \\
& u_{x}(0, t)=0 \\
& \lim _{x \rightarrow \infty} u(x, t)=0
\end{aligned}
$$

12. Find the Fourier transform for the function $f(x)=1$ if $-1 \leq x \leq 1$, and 0 elsewhere.
13. Find the Fourier transform of $f(x)=\mathrm{e}^{-c|x|}, c>0$.
14. Find the Fourier transform of $f^{\prime}(x)$ and $f^{\prime \prime}(x)$ in terms of the Fourier transform of $f(x)$.
15. Show that $\mathcal{F}(f(x-c))=\mathrm{e}^{-i c \alpha} F(\alpha)$, where $F(\alpha)$ is the Fourier transform of $f(x)$.
16. Find the Fourier transform of the solution for the heat equation below:

$$
\begin{aligned}
& u_{t}=4 u_{x x}, \quad-\infty<x<\infty, t>0 \\
& u(x, 0)=f(x) \\
& \lim _{|x| \rightarrow \infty} u(x, t)=0
\end{aligned}
$$

17. Find the Fourier transform of the solution for the heat equation below (the sides of the infinite rod are uninsulated):

$$
\begin{aligned}
& u_{t}=u_{x x}-u, \quad-\infty<x<\infty, t>0 \\
& u(x, 0)=f(x) \\
& \lim _{|x| \rightarrow \infty} u(x, t)=0
\end{aligned}
$$

