Summary of Eigenfunctions for Homog BCs (Corrected)

Given: $X^{\prime \prime}+\lambda X=0$ on the interval $[0, L]$ with the following sets of boundary conditions (BCs):

$$
\begin{array}{llll}
\frac{\mathrm{BC} 1}{X(0)}=0 & \underline{\mathrm{BC} 2} & \underline{\mathrm{BC} 3} & \underline{\mathrm{BC}^{\prime}} \\
X(0) & =0 & X^{\prime}(0)=0 & X^{\prime}(0)=0 \\
X(L)=0 & X^{\prime}(L)=0 & X(L)=0 & X^{\prime}(L)=0
\end{array}
$$

In each situation, we find the eigenvalues λ_{n} and the eigenfunctions $X_{n}(x)$.
BC 1: (Homogeneous Dirichlet) In this case, we obtain

$$
\lambda_{n}=\left(\frac{n \pi}{L}\right)^{2} \quad X_{n}(x)=\sin \left(\frac{n \pi x}{L}\right), \text { for } n=1,2,3, \ldots
$$

This leads to the Fourier sine series for $f(x)$ on $[0, L]$:

$$
F(x)=\sum_{n=1}^{\infty} b_{n} \sin \left(\frac{n \pi x}{L}\right) \quad \text { where } b_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x
$$

BC 2: In this case, we obtain

$$
\lambda_{n}=\left(\frac{(2 n-1) \pi}{2 L}\right)^{2} \quad X_{n}(x)=\sin \left(\frac{(2 n-1) \pi x}{2 L}\right), \text { for } n=1,2,3, \ldots
$$

This leads to the Fourier sine series (with frequencies at odd multiples of $\pi / 2 L$) for $f(x)$ on $[0, L]$:

$$
F(x)=\sum_{n=1}^{\infty} b_{n} \sin \left(\frac{(2 n-1) \pi x}{2 L}\right) \quad \text { where } b_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \left(\frac{(2 n-1) \pi x}{2 L}\right) d x
$$

BC 3: In this case, we obtain

$$
\lambda_{n}=\left(\frac{(2 n-1) \pi}{2 L}\right)^{2} \quad X_{n}(x)=\cos \left(\frac{(2 n-1) \pi x}{2 L}\right), \text { for } n=1,2,3, \ldots
$$

This leads to the Fourier cosine series for $f(x)$ on $[0, L]$, and remember that $\lambda \neq 0$ in this case.

$$
F(x)=\sum_{n=1}^{\infty} a_{n} \cos \left(\frac{(2 n-1) \pi x}{2 L}\right) \quad \text { where } a_{n}=\frac{2}{L} \int_{0}^{L} f(x) \cos \left(\frac{(2 n-1) \pi x}{2 L}\right) d x
$$

BC 4: (Homogeneous Neumann) In this case, we obtain

$$
\begin{array}{ll}
\lambda_{0}=0 & X_{0}(x)=1 \\
\lambda_{n}=\left(\frac{n \pi}{L}\right)^{2} & X_{n}(x)=\cos \left(\frac{n \pi x}{L}\right), \text { for } n=1,2,3, \ldots
\end{array}
$$

This leads to the Fourier cosine series for $f(x)$ on $[0, L]$:

$$
F(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \left(\frac{n \pi x}{L}\right) \quad \text { where } a_{n}=\frac{2}{L} \int_{0}^{L} f(x) \cos \left(\frac{n \pi x}{L}\right) d x
$$

Recall that in each case, eigenfunctions corresponding to distinct eigenvalues are orthogonal. Also recall the full Fourier series on the full interval $[-L, L]$:

$$
\begin{gathered}
F(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \left(\frac{n \pi x}{L}\right)+\sum_{n=1}^{\infty} b_{n} \sin \left(\frac{n \pi x}{L}\right) \quad \text { with } \\
a_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \left(\frac{n \pi x}{L}\right) d x \quad b_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x
\end{gathered}
$$

