## Review Questions, Exam 2 (Fourier series)

1. True or False (and give a short reason):
(a) If $f(x)$ is PWS on $[0, L]$, we can find a series representation for $f$ using either sine series or a cosine series.
(b) If $f(x)$ is PWS on $[-L, L]$, we can find a series representation for $f$ using either sine series or cosine series.
(c) If $f$ is PWS on $[-L, L]$, then the sine series for $f(x)$ will converge to the odd extension of $f$.
(d) The Gibbs phenomenon occurs only when we use a finite number of terms in the Fourier series to represent a function with a jump discontinuity.
(e) The functions $\sin (n x)$ for $n=1,2,3, \ldots$ are orthogonal to the functions $\cos (m x)$ for $m=0,1,2, \ldots$ on $[0, \pi]$.
2. What does the Fundamental Theorem of Fourier series say? (be specific and complete!).
3. Is $f$ periodic (if so, give the period)?
(a) $f(x)=\cos (x / 4)+\sin (x)$
(b) $f(x)=\cos (3 x)+\cos (4 x)$
(c) $f(x)=x \sin (x)$
4. Is $f$ piecewise continuous (PWC)? Is $f$ piecewise smooth (PWS)?
(a) $f(x)=\left\{\begin{aligned} x^{2} & \text { if }-\pi<x<0 \\ x^{2}+1 & \text { if } 0 \leq x<\pi\end{aligned}\right.$
(b) $f(x)=\left\{\begin{aligned}-\ln (x-1) & \text { if } 0<x<1 \\ 1 & \text { if } 1 \leq x<2\end{aligned}\right.$
(c) $f(x)=\sqrt[3]{x}$ on $[-1,1]$
(d) $f(x)=|x|$ on $[-1,1]$.
5. Prove (using the definition), that the product of an odd and even function is odd.
6. Show that $x^{n}$ and $x^{m}$ are orthogonal on $[-L, L]$ (using the usual inner product, and assuming $n, m$ are positive integers) if $n, m$ are not both even or both odd.
7. True or False? (If false, give an example) Assume $f$ is PWS on $[-L, L]$.
(a) If $f$ is continuous, so is the Fourier series of $f$.
(b) If $f$ is discontinuous, so is the Fourier series of $f$.
8. Draw the Fourier sine series for the function (showing at least three periods):

$$
f(x)=\left\{\begin{aligned}
3 & \text { if } x=0 \text { or } x=1 \\
x+1 & \text { otherwise, } 0<x \leq 2
\end{aligned}\right]
$$

9. Draw the Fourier cosine series of the function in the previous problem (showing at least three periods).
10. Let $f(x)=3 x+5$. Compute the even and odd parts of $f$.
11. Let

$$
f(x)=\left\{\begin{aligned}
2 x & \text { for } 0<x<1 \\
2 & \text { for } 1<x<2
\end{aligned}\right.
$$

(a) Write the even extension of $f$ as a piecewise defined function.
(b) Write the odd extension of $f$ as a piecewise defined function.
(c) Draw a sketch of the periodic extension of $f$.
(d) Find the Fourier sine series (FSS) for $f$, and draw the FSS on the interval $[-4,4]$.
(e) Find the Fourier cosine series (FCS) for $f$, and draw the $F C S$ on the interval $[-4,4]$.
12. Let $f(x)$ be given as below.

$$
f(x)=\left\{\begin{aligned}
x & \text { if }-1<x<0 \\
1+x & \text { if } 0<x<1
\end{aligned}\right.
$$

(a) Find the Fourier series for $f$ (on $[-1,1]$ ), and draw a sketch of it on $[-3,3]$.
(b) Find the Fourier sine series for $f$ on $[0,1]$ and draw a sketch of it on $[-3,3]$.
(c) Find the Fourier cosine series for $f$ on $[0,1]$ and draw a sketch of it on $[-3,3]$.
13. In the formula for the coefficients of the Fourier series, we have either $1 / L$ or $2 / L$ (depending on the interval). Where did these come from? Verify these constants directly.

