Review Questions, Exam 2 (Fourier series)

1. True or False (and give a short reason):
(a) If $f(x)$ is PWS on $[0, L]$, we can find a series representation for f using either sine series or a cosine series.
SOLUTION: True- either the sine series or the cosine series will converge to $f(x)$ where f is continuous on $[0, L]$.
(b) If $f(x)$ is PWS on $[-L, L]$, we can find a series representation for f using either sine series or cosine series.
SOLUTION: False. For the full interval, we'll need both sine and cosines.
(NOTE: We're assuming that the argument for the functions is the usual $n \pi x / L$, because otherwise the statement could actually be true.)
(c) If f is PWS on $[-L, L]$, then the sine series for $f(x)$ will converge to the odd extension of f.
SOLUTION: False- The sine series converges to the odd part of f, which was given by

$$
f_{o}=\frac{1}{2}(f(x)-f(-x))
$$

Of course, if f itself is odd, then it would be true, but then the odd extension is $f(x)$ itself as well.
(d) The Gibbs phenomenon occurs only when we use a finite number of terms in the Fourier series to represent a function with a jump discontinuity.
SOLUTION: True. The "ringing" we see only occurs when using a finite sum as an approximation to the infinite sum. In the infinite sum, if f is not continuous at $x=a$, then the Fourier series converges to

$$
\frac{1}{2}(f(a+)+f(a-))
$$

(e) The functions $\sin (n x)$ for $n=1,2,3, \ldots$ are orthogonal to the functions $\cos (m x)$ for $m=0,1,2, \ldots$ on $[0, \pi]$.
SOLUTION: False. For example,

$$
\int_{0}^{\pi} \sin (x) d x=-\cos (\pi)+\cos (0)=2
$$

However, it is true that $\sin (n x)$ and $\sin (m x)$ are orthogonal on $[0, \pi]$ (as are $\cos (n x), \cos (m x))$, or if we extend the interval to $[-\pi, \pi]$, then the statement would be true.
2. What does the Fundamental Theorem of Fourier series say? (be specific and complete!).

SOLUTION: If $f(x)$ is PWS on $[-L, L]$, then the Fourier series

$$
F(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \left(\frac{n \pi x}{L}\right) \sin \left(\frac{n \pi x}{L}\right)
$$

will converge. In addition,

- If $f(x)$ is continuous at x, then the Fourier series converges to $f(x)$.
- If $f(x)$ is discontinuous at x, the the Fourier series converges to
$(1 / 2)(f(x+)+f(x-))$.
- At the endpoints, the Fourier series converges to $(1 / 2)(f(L-)+f(L+))$

3. Is f periodic (if so, give the period)?
(a) $f(x)=\cos (x / 4)+\sin (x)$

SOLUTION: The period of $\cos (x / 4)$ is 8π and the period of $\sin (x)$ is 2π, so overall, the period is 8π. You can see it here:

(b) $f(x)=\cos (3 x)+\cos (4 x)$

SOLUTION: The periods of the two functions are $2 \pi / 3$ and $\pi / 4$. Thinking about a minimum length, we get to 2π for both.

(c) $f(x)=x \sin (x)$

SOLUTION: This function is not periodic.
4. Is f piecewise continuous (PWC)? Is f piecewise smooth (PWS)?
(a) $f(x)=\left\{\begin{aligned} x^{2} & \text { if }-\pi<x<0 \\ x^{2}+1 & \text { if } 0 \leq x<\pi\end{aligned}\right.$

SOLUTION: This function is piecewise continuous (the only point of discontinuity is at zero, and that is a jump discontinuity). The derivative is $2 x$ except for a hole at $x=0$ (the derivative there is not defined, but is just a hole, so the limit exists from the right and left). Therefore, the function is PWC and PWS.
(b) $f(x)=\left\{\begin{aligned}-\ln (x-1) & \text { if } 0<x<1 \\ 1 & \text { if } 1 \leq x<2\end{aligned}\right.$

SOLUTION: The function $\ln (z)$ has a vertical asymptote at $z=0$, so in this case, there is a vertical asymptote at $x=1$, so the function is not PWC. Similarly, on $(0,1)$, the derivative is $-1 /(x-1)$, which also has a vertical asymptote at $x=1$, so the function is not PWS.
(c) $f(x)=\sqrt[3]{x}$ on $[-1,1]$

SOLUTION: The cube root function is continuous everywhere, so the function is also PWC. The derivative is $\frac{1}{3} x^{-2 / 3}$, which means we have a vertical asymptote at at $x=0$, so the function is not PWS.
(d) $f(x)=|x|$ on $[-1,1]$.

SOLUTION: This function is both continuous (so PWC as well), and PWS.
5. Prove (using the definition), that the product of an odd and even function is odd. SOLUTION: Let $f(x)$ be odd, and $g(x)$ be even, and let $F(x)=f(x) g(x)$. Then

$$
F(-x)=f(-x) g(-x)=-f(x) g(x)=-F(x)
$$

6. Show that x^{n} and x^{m} are orthogonal on $[-L, L]$ (using the usual inner product, and assuming n, m are positive integers) if n, m are not both even or both odd.

SOLUTION: Two functions are orthogonal if the inner product is zero. In the "usual" case:

$$
\int_{-L}^{L} x^{n} x^{m} d x
$$

The integral will be zero if $x^{n} x^{m}$ is odd, which only happens if n is odd and m is even, or if n is even and m is odd.
7. True or False? (If false, give an example) Assume f is PWS on $[-L, L]$.
(a) If f is continuous, so is the Fourier series of f.

SOLUTION: False. If the periodic extension of f was continuous, then the Fourier series would be continuous.
(b) If f is discontinuous, so is the Fourier series of f.

SOLUTION: False. It depends on what kind of discontinuity- If the function is not continuous at $x=a$, for example, then the Fourier series converges to $(f(a+)-f(a-)) / 2$, so if the limits are the same, the Fourier series could be filling in the "hole" at $x=a$. If the discontinuity is a jump discontinuity, then the Fourier series would also be discontinuous there.
8. Draw the Fourier sine series for the function (showing at least three periods):

$$
f(x)=\left\{\begin{aligned}
3 & \text { if } x=0 \text { or } x=1 \\
x+1 & \text { otherwise, } 0<x \leq 2
\end{aligned}\right]
$$

9. Draw the Fourier cosine series of the function in the previous problem (showing at least three periods).
10. Let $f(x)=3 x+5$. Compute the even and odd parts of f.

SOLUTION: The odd part is $f_{\text {odd }}=\frac{1}{2}(f(x)-f(-x))=3 x$
The even part is $f_{\text {even }}=\frac{1}{2}(f(x)+f(-x))=5$
Side note: If we had the full Fourier series for $3 x+5$ on the interval $[-L, L]$, then the sine series would converge to $3 x$ and the cosine series to 5 (in fact, the cosine series is just the number 5).
11. Let

$$
f(x)=\left\{\begin{aligned}
2 x & \text { for } 0<x<1 \\
2 & \text { for } 1<x<2
\end{aligned}\right.
$$

(a) Write the even extension of f as a piecewise defined function.

The even extension of f on the interval $[-2,2]$ would be defined as:
$f(x)=\left\{\begin{aligned} 2 & \text { for }-2<x<-1 \\ -2 x & \text { for }-1<x<0 \\ 2 x & \text { for } 0<x<1 \\ 2 & \text { for } 1<x<2\end{aligned}\right.$

(b) Write the odd extension of f as a piecewise defined function.

Similarly, the odd extension on $[-2,2]$ is defined as:
$f(x)=\left\{\begin{aligned}-2 & \text { for }-2<x<-1 \\ 2 x & \text { for }-1<x<0 \\ 2 x & \text { for } 0<x<1 \\ 2 & \text { for } 1<x<2\end{aligned}\right.$

(c) Draw a sketch of the periodic extension of f.

SOLUTION:

(d) Find the Fourier sine series (FSS) for f, and draw the FSS on the interval $[-4,4]$.

NOTE: The vertical lines don't belong in the graph, and in the places where there is a jump discontinuity (at $-6,-2,2,6$), we ought to draw a point to indicate that the series converges to zero there.
The algebraic form of the series is:

$$
f(x) \sim \sum_{n=1}^{\infty} b_{n} \sin \left(\frac{n \pi x}{2}\right) \Rightarrow b_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x
$$

Therefore, with $L=2$:

$$
\begin{gathered}
b_{n}=\int_{0}^{1} 2 x \sin \left(\frac{n \pi x}{2}\right) d x+\int_{1}^{2} 2 \sin \left(\frac{n \pi x}{2}\right) d x= \\
-\frac{4}{n^{2} \pi^{2}}\left(-2 \sin \left(\frac{n \pi}{2}\right)+n \pi \cos \left(\frac{n \pi}{2}\right)-\frac{4}{n \pi}\left(-1+(-1)^{n}\right)\right.
\end{gathered}
$$

It is possible to simplify that a bit, but that is unnecessary for the exam.
(e) Find the Fourier cosine series (FCS) for f, and draw the $F C S$ on the interval $[-4,4]$.
SOLUTION:

NOTE: The vertical lines don't belong in the graph, the series would continue out in a continuous fashion.
The algebraic form of the series is:

$$
f(x) \sim \frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \left(\frac{n \pi x}{2}\right) \Rightarrow a_{n}=\frac{2}{L} \int_{0}^{L} f(x) \cos \left(\frac{n \pi x}{L}\right) d x
$$

The computation for a_{0} is slightly different, so do that one first:

$$
a_{0}=\frac{2}{L} \int_{0}^{L} f(x) d x=\int_{0}^{1} 2 x d x+\int_{1}^{2} 2 d x=3
$$

And, for $n=1,2,3, \ldots$:

$$
a_{n}=\frac{2}{2} \int_{0}^{2} f(x) \cos \left(\frac{n \pi x}{2}\right) d x=\int_{0}^{1} 2 x \cos \left(\frac{n \pi x}{2}\right) d x+\int_{1}^{2} 2 \cos \left(\frac{n \pi x}{2}\right) d x
$$

For the first integral, we integrate by parts:

$$
\begin{aligned}
& + \\
& + \\
& - \\
& - \\
& + \\
& + \\
& \hline
\end{aligned} \frac{\cos (n \pi x / 2)}{-\left(4 / n^{2} \pi^{2}\right) \cos (n \pi x / 2)} \quad \Rightarrow \quad\left(\frac{4 x}{n \pi} \sin \left(\frac{n \pi x}{2}\right)+\left.\frac{8}{n^{2} \pi^{2}} \cos \left(\frac{n \pi x}{2}\right)\right|_{0} ^{1}\right.
$$

For the first integral, we get

$$
\frac{4}{n \pi} \sin \left(\frac{n \pi}{2}\right)+\frac{8}{n^{2} \pi^{2}} \cos \left(\frac{n \pi}{2}\right)-\frac{8}{n^{2} \pi^{2}}
$$

For the second integral, we get

$$
\left(\left.\frac{4}{n \pi} \sin \left(\frac{n \pi x}{2}\right)\right|_{1} ^{2}=0-\frac{4}{n \pi} \sin \left(\frac{n \pi}{2}\right)\right.
$$

It is possible to simplify that a bit, but that is unnecessary for the exam.
12. Let $f(x)$ be given as below.

$$
f(x)=\left\{\begin{array}{r}
x \text { if }-1<x<0 \\
1+x \text { if } 0<x<1
\end{array}\right.
$$

(a) Find the Fourier series for f (on $[-1,1]$), and draw a sketch of it on $[-3,3]$.

SOLUTION: I'll leave the sketch to you. The main purpose here is to have you recall the formulas for the series coefficients. In this case,

$$
f(x) \sim \frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos (n \pi x)+\sum_{n=1}^{\infty} b_{n} \sin (n \pi x)
$$

with the formulas:

$$
a_{0}=\frac{1}{L} \int_{-L}^{L} f(x) d x=\int_{-1}^{0} x d x+\int_{0}^{1}(1+x) d x=1
$$

and, we should find that the a_{n} 's are zero:
$a_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \cos (n \pi x / L) d x=\int_{-1}^{0} x \cos (n \pi x) d x+\int_{0}^{1}(1+x) \cos (n \pi x) d x=0$
As we did for the a_{n}, we'll need to use integration by parts:

$$
\begin{aligned}
& b_{n}=\frac{1}{L} \int_{-1}^{1} f(x) \sin (n \pi x / L) d x=\int_{-1}^{0} x \sin (n \pi x) d x+\int_{0}^{1}(1+x) \sin (n \pi x) d x \\
& +x \quad \sin (n \pi x) \\
& \begin{array}{ll}
- & 1 \\
- & -(1 / n \pi) \cos (n \pi x) \\
+ & 0 \\
-\left(1 / n^{2} \pi^{2}\right) \sin (n \pi x)
\end{array} \quad \Rightarrow \quad\left(-\frac{x}{n \pi} \cos (n \pi x)+\left.\frac{1}{n^{2} \pi^{2}} \sin (n \pi x)\right|_{-1} ^{0}=\right. \\
& (0+0)-\left(\frac{1}{n \pi} \cos (n \pi)-0\right)=-\frac{1}{n \pi}(-1)^{n}
\end{aligned}
$$

and for the other integral,

$$
\left(-\frac{1+x}{n \pi} \cos (n \pi x)+\left.\frac{1}{n^{2} \pi^{2}} \sin (n \pi x)\right|_{0} ^{1}=\left(-\frac{2}{n \pi}(-1)^{n}+0\right)-\left(-\frac{1}{n \pi}+0\right)\right.
$$

Putting them all together:

$$
\frac{1}{n \pi}\left(1-(-1)^{n}-2(-1)^{n}\right)
$$

(NOTE: If you subtracted $1 / 2$ from your function $f(x)$, it becomes an odd function- That's why the cosine terms ended up being zero).
(b) Find the Fourier sine series for f on $[0,1]$ and draw a sketch of it on $[-3,3]$.

SOLUTION: Again, the main point here is to have you recall the formulas and set up the integrals:

$$
f(x) \sim \sum_{n=1}^{\infty} b_{n} \sin \left(\frac{n \pi x}{L}\right)
$$

with

$$
b_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin (n \pi x / L) d x=2 \int_{0}^{1}(1+x) \sin (n \pi x) d x=2 \frac{1-2(-1)^{n}}{n \pi}
$$

(c) Find the Fourier cosine series for f on $[0,1]$ and draw a sketch of it on $[-3,3]$. SOLUTION: The formulas:

$$
f(x) \sim \frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \left(\frac{n \pi x}{L}\right)
$$

with

$$
\begin{gathered}
a_{0}=\frac{2}{L} \int_{0}^{L} f(x) d x=2 \int_{0}^{1}(1+x) d x=3 \\
a_{n}=\frac{2}{L} \int_{0}^{L} f(x) \cos (n \pi x / L) d x=2 \int_{0}^{1}(1+x) \cos (n \pi x) d x=2 \frac{(-1)+(-1)^{n}}{n^{2} \pi^{2}}
\end{gathered}
$$

13. For the coefficients, the term $2 / L$ or $1 / L$ comes from the denominator:

$$
\frac{\left\langle f(x), y_{n}\right\rangle}{\left\langle y_{n}, y_{n}\right\rangle}
$$

So for example, in the full Fourier series, we have the term $1 / L$ in front, meaning that the denominator evaluates to L. We show that for the cosines:

$$
\int_{-L}^{L} \cos ^{2}\left(\frac{n \pi x}{L}\right) d x=\frac{1}{2} \int_{-L}^{L} 1+\cos \left(\frac{2 n \pi x}{L}\right) d x=\frac{1}{2}\left(x+\left.\frac{L}{2 n \pi} \sin \left(\frac{2 n \pi x}{L}\right)\right|_{-L} ^{L}=L\right.
$$

(You only need to show one of these).

