HW: Section 2.6, \#10

We'll look at part (b), where we want to solve Laplace's equation:

$$
\begin{aligned}
& u_{x x}+u_{y y}=0 \\
& u(x, 0)=\sin (3 x) \\
& u(x, 1)=\sin (x) \\
& u(0, y)=u(\pi, y)=0
\end{aligned}
$$

Using the product solution $u(x, y)=X(x) Y(y)$,

$$
X^{\prime \prime} Y+X Y^{\prime \prime}=0 \quad \frac{X^{\prime \prime}}{X}+\frac{Y^{\prime \prime}}{Y}=0 \quad \Rightarrow \quad \frac{X^{\prime \prime}}{X}=-\frac{Y^{\prime \prime}}{Y}=-\lambda
$$

With an eye on our boundary conditions,

$$
u(0, y)=0 \quad \Rightarrow \quad X(0) Y(y)=0 \quad \Rightarrow X(0)=0
$$

and similarly, we'll take $X(\pi)=0$. Now we have the ODEs:

$$
\begin{array}{ll}
Y^{\prime \prime}-\lambda Y=0 & X^{\prime \prime}+\lambda X=0 \\
& X(0)=0, X(\pi)=0
\end{array}
$$

We'll use the fact that we know the eigenvalues and eigenvectors to the ODE in X :

$$
\lambda_{n}=\frac{n^{2} \pi^{2}}{\pi^{2}}=n^{2} \quad X_{n}(x)=\sin (n x)
$$

Now we solve the ODE in Y using the λ_{n} :

$$
Y^{\prime \prime}-n^{2} Y=0 \quad \Rightarrow \quad r^{2}=n^{2} \quad r= \pm n
$$

At this point, you could use either the hyperbolic sine and cosine (that's the solution to the last problem of the exam review), or you could use exponentials. Let's try using the exponentials:

$$
Y_{n_{1}}=\mathrm{e}^{n y} \quad Y_{n_{2}}=\mathrm{e}^{-n y}
$$

Therefore, the full solution so far is:

$$
u(x, y)=\sum_{n=1}^{\infty} C_{n} \mathrm{e}^{n y} \sin (n x)+D_{n} \mathrm{e}^{-n y} \sin (n x)
$$

Now, if $u(x, 0)=\sin (3 x)$ and $u(x, 1)=\sin (x)$, then we have to determine $C_{1}, D_{1}, C_{3}, D_{3}$ and set everything else to zero. Apply our BCs:

$$
\begin{gathered}
u(x, y)=C_{1} \mathrm{e}^{y} \sin (x)+C_{3} \mathrm{e}^{3 y} \sin (3 x)+D_{1} \mathrm{e}^{-y} \sin (x)+D_{3} \mathrm{e}^{-3 y} \sin (3 x) \\
u(x, 0)=\sin (3 x) \Rightarrow C_{1} \sin (x)+C_{3} \sin (3 x)+D_{1} \sin (x)+D_{3} \sin (3 x)=\sin (3 x)
\end{gathered}
$$

Therefore, $C_{1}+D_{1}=0$ and $C_{3}+D_{3}=1$. Going on to the next BC,

$$
u(x, 1)=\sin (x) \quad \Rightarrow \quad C_{1} e \sin (x)+C_{3} e^{3} \sin (3 x)+D_{1} e^{-1} \sin (x)+D_{3} e^{-3} \sin (3 x)=\sin (x)
$$

from which we get: $C_{1} e+C_{1} e^{-1}=1$ and $C_{3} \mathrm{e}^{3}+D_{3} \mathrm{e}^{-3}=0$.
Put these together to solve for C_{1}, D_{1} and C_{3}, D_{3} (use Cramer's Rule):

$$
\begin{aligned}
C_{1}+D_{1} & =0 \\
C_{1} \mathrm{e}+D_{1} \mathrm{e}^{-1} & =1
\end{aligned} \quad \Rightarrow \quad C_{1}=\frac{\left|\begin{array}{rr}
0 & 1 \\
1 & \mathrm{e}^{-1}
\end{array}\right|}{\left|\begin{array}{rr}
1 & 1 \\
\mathrm{e} & \mathrm{e}^{-1}
\end{array}\right|}=\frac{-1}{\mathrm{e}^{-1}-\mathrm{e}}, \quad D_{1}=\frac{\left|\begin{array}{rr}
1 & 0 \\
\mathrm{e} & 1
\end{array}\right|}{\left|\begin{array}{rr}
1 & 1 \\
\mathrm{e} & \mathrm{e}^{-1}
\end{array}\right|}=\frac{1}{\mathrm{e}^{-1}-\mathrm{e}}
$$

Similarly, for C_{3}, D_{3}, we have:

$$
\begin{aligned}
C_{3}+D_{3} & =1 \\
C_{3} \mathrm{e}^{3}+D_{3} \mathrm{e}^{-3} & =0
\end{aligned} \quad \Rightarrow \quad C_{3}=\frac{\left|\begin{array}{cc}
1 & 1 \\
0 & \mathrm{e}^{-3}
\end{array}\right|}{\left|\begin{array}{cc}
1 & 1 \\
\mathrm{e}^{3} & \mathrm{e}^{-3}
\end{array}\right|}=\frac{\mathrm{e}^{-3}}{\mathrm{e}^{-3}-\mathrm{e}^{3}}, \quad D_{3}=\frac{\left|\begin{array}{cc}
1 & 1 \\
\mathrm{e}^{3} & 0
\end{array}\right|}{\left|\begin{array}{cc}
1 & 1 \\
\mathrm{e}^{3} & \mathrm{e}^{-3}
\end{array}\right|}=\frac{-\mathrm{e}^{3}}{\mathrm{e}^{-3}-\mathrm{e}^{3}}
$$

