Introduction to Chapter 4

The big question we want to ask: If $f(x)$ is represented by its Fourier series as $F(x)$, do we get the Fourier series of $f^{\prime}(x)$ by differentiating $F(x)$? Let's be more specific with an example:

First we compute the Fourier sine series for $f(x)=x$ on $[0,1]$, then we differentiate both sides with respect to x :

$$
x \sim \sum_{n=1}^{\infty} B_{n} \sin (n \pi x) \quad \Rightarrow \quad 1 \sim \sum_{n=1}^{\infty} B_{n} n \pi \cos (n \pi x)
$$

We'll show below that $B_{n}=\frac{2(-1)^{n+1}}{n \pi}$, but substituting it in now, we should get the Fourier series for the derivative.

$$
1 \sim \sum_{n=1}^{\infty} 2(-1)^{n+1} \cos (n \pi x)
$$

There are several problems with this- The first is that the Fourier cosine series of the derivative $f^{\prime}(x)=1$ should be $F^{\prime}(x)=1$. The second thing is that the terms of the sum on the right do not go to zero as $n \rightarrow \infty$, so the sum does not even converge (by the way, at $x=1$, the sum equals 0). What happened? We'll discuss that below, but first let's include the details that we left off previously.

Computing B_{n}

$$
B_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x=2 \int_{0}^{1} x \sin (n \pi x) d x
$$

Integrate by parts:

$$
\begin{gathered}
+ \\
+ \\
\\
- \\
+ \\
+
\end{gathered}
$$

Using $\cos (n \pi)=(-1)^{n}$, we then get

$$
B_{n}=\frac{2(-1)^{n+1}}{n \pi}
$$

so that the Fourier series for $f(x)=x$ is given by:

$$
x \sim \sum_{n=1}^{\infty} \frac{2(-1)^{n+1}}{n \pi} \sin (n \pi x)
$$

Back to the Derivative

If $f(x)$ has a sine series, what should the series of its derivative be? Let's examine that closer:

$$
f(x) \sim \sum_{n=1}^{\infty} B_{n} \sin \left(\frac{n \pi x}{L}\right) \quad \text { where } \quad B_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x
$$

We can compare the two forms for the derivative- One by differentiating term by term, the other by looking at the cosine series for $f^{\prime}(x)$. (Remember that our goal is to understand the relationship between B_{n} and A_{n} in the series below).

- If we differentiate the sine series term-by-term, we get:

$$
f^{\prime}(x) \sim \sum_{n=1}^{\infty} \frac{n \pi}{L} B_{n} \cos \left(\frac{n \pi x}{L}\right)
$$

- If we look at the cosine series for $f^{\prime}(x)$ directly, we get:

$$
f^{\prime}(x) \sim \frac{A_{0}}{2}+\sum_{n=1}^{\infty} A_{n} \cos \left(\frac{n \pi x}{L}\right)
$$

where

$$
\frac{A_{0}}{2}=\frac{1}{2} \frac{2}{L} \int_{0}^{L} f^{\prime}(x) d x=\frac{1}{L} \int_{0}^{L} f^{\prime}(x) d x=\left.\frac{1}{L} f(x)\right|_{0} ^{L}=\frac{1}{L}(f(L)-f(0))
$$

Therefore, if $L=1$ and $f(x)=x$, this becomes: $A_{0} / 2=1$ (as desired). For the other values of n,

$$
A_{n}=\frac{2}{L} \int_{0}^{L} f^{\prime}(x) \cos \left(\frac{n \pi x}{L}\right) d x \quad \Rightarrow \quad{ }_{-}^{+} \quad \begin{gathered}
\cos (n \pi x / L)
\end{gathered} f^{\prime}(x)
$$

After integration by parts,

$$
A_{n}=\frac{2}{L}\left[\left(\left.f(x) \cos \left(\frac{n \pi x}{L}\right)\right|_{0} ^{L}+\frac{n \pi}{L} \int_{0}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x\right]\right.
$$

The first term is:

$$
\frac{2}{L}(f(L) \cos (n \pi)-f(0))=\frac{2}{L}\left(f(L)(-1)^{n}-f(0)\right)
$$

and the second term we can write in terms of B_{n}, since $B_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x$. Putting these together, we get our final result:

$$
A_{n}=\frac{2}{L}\left(f(L)(-1)^{n}-f(0)\right)+\frac{n \pi}{L} B_{n}
$$

Comparing the two sets of terms, the derivative is the result of term-by-term differentiation if

$$
A_{0}=0 \quad A_{n}=\frac{n \pi}{L} B_{n}
$$

This occurs when $f(0)=f(L)=0$, in which case the Fourier sine series is continuous (if f is continuous on $[0, L]$).

SUMMARY: If the Fourier sine series is continuous, then it is valid to differentiate the sine series term by term.

What about the cosine series?

What happens if $f(x)$ has a cosine series? Let's go through the same arguments as before and see what happens. Take

$$
f(x) \sim A_{0}+\sum_{n=1}^{\infty} A_{n} \cos \left(\frac{n \pi x}{L}\right) \quad \Rightarrow \quad A_{n}=\frac{2}{L} \int_{0}^{L} f(x) \cos (n \pi x / L) d x
$$

Again compare the two forms for the derivative- One by differentiating term by term, the other by looking at the sine series for $f^{\prime}(x)$.

- Differentiating term-by-term, we get:

$$
f^{\prime}(x) \sim-\sum_{n=1}^{\infty} \frac{n \pi}{L} A_{n} \sin \left(\frac{n \pi x}{L}\right)
$$

- Looking at the Fourier sine series of $f^{\prime}(x)$, we get:

$$
f^{\prime}(x) \sim \sum_{n=1}^{\infty} B_{n} \sin \left(\frac{n \pi x}{L}\right) \Rightarrow B_{n}=\frac{2}{L} \int_{0}^{L} f^{\prime}(x) \sin (n \pi x / L) d x
$$

Now, if term-by-term differentiation is valid, we should see that $B_{n}=-\frac{n \pi}{L} A_{n}$
Now we work it out by using integration by parts for the integral representation of B_{n} :

$$
B_{n}=\frac{2}{L} \int_{0}^{L} f^{\prime}(x) \sin \left(\frac{n \pi x}{L}\right) d x \quad \Rightarrow \quad \begin{gathered}
\sin (n \pi x / L) \\
- \\
(n \pi / L) \cos (n \pi x / L)
\end{gathered} \begin{aligned}
& f^{\prime}(x) \\
& f(x)
\end{aligned}
$$

Integrating by parts gives us:

$$
B_{n}=\frac{2}{L}\left(\left.f(x) \sin (n \pi x / L)\right|_{0} ^{L}-\frac{n \pi}{L} \frac{2}{L} \int_{0}^{L} f(x) \cos (n \pi x / L) d x=-\frac{n \pi}{L} A_{n}\right.
$$

This seems to always be the case! Let's summarize and expand on what we have found using the next three theorems.

Theorem (Fourier series)

- If f and $f^{\prime}(x)$ are PWS, and $f(-L)=f(L)$, then the full Fourier series can be differentiated term by term.
- Alternatively, if the Fourier series is continuous and f^{\prime} is PWS, then the series can be differentiated term by term.

Theorem: Fourier Cosine Series

- If f, f^{\prime} are PWS on $[0, L]$, then the Fourier cosine series can be differentiated term by term.
- Alternatively, if f^{\prime} is PWS on $[0, L]$ and the Fourier cosine series is continuous, then the series can be differentiated term by term.

Theorem: Fourier Sine Series

- If f, f^{\prime} are PWS on $[0, L]$, and $f(0)=F(L)=0$, then the series can be differentiated term by term.
- Alternatively, if f^{\prime} is PWS and the Fourier sine series is continuous, then the series can be be differentiated term by term.
- The general formula for the derivative of the FSS: $f(x) \sim \sum_{n=1}^{\infty} B_{n} \sin \left(\frac{n \pi x}{L}\right)$ is then

$$
f^{\prime}(x) \sim \frac{1}{L}(f(L)-f(0))+\sum_{n=1}^{\infty}\left[\frac{n \pi}{L} B_{n}+\frac{2}{L}\left((-1)^{n} f(L)-f(0)\right)\right] \cos \left(\frac{n \pi x}{L}\right)
$$

