Problem Set 7 (4.1, 4.2)

Due: 4.1: 1(a), 2(c), 3(a) and 4.2: 1(c), 2(c)
4.1.1(a) Solve the heat equation if $L=\pi$, the two ends are held at 0 degrees, the initial temperature is uniformly 20 degrees.

$$
\begin{aligned}
u_{t} & =2 u_{x x}, \quad 0<x<\pi \\
u(x, 0) & =20 \\
u(0, t) & =0 \\
u(\pi, t) & =0
\end{aligned}
$$

SOLUTION: Separate variables and get the eigenfunctions. Because we have $X(0)=0$ and $X(\pi)=0$, let's keep the constant 2 with T (like in the exam).

$$
X T^{\prime}=2 X^{\prime \prime} T \quad \Rightarrow \quad \frac{T^{\prime}}{2 T}=\frac{X^{\prime \prime}}{X}=-\lambda
$$

Therefore,

$$
\begin{gathered}
X^{\prime \prime}+\lambda X=0 \\
X(0)=X(\pi)=0
\end{gathered} \quad T^{\prime}+2 \lambda T=0
$$

For the BVP in X, we know that $\lambda_{n}=n^{2}$ and $X_{n}(x)=\sin (n x)$.
Changing the DE in T now that we have λ,

$$
T^{\prime}+2 n^{2} T=0 \quad \Rightarrow \quad T^{\prime}=-2 n^{2} T \quad \Rightarrow \quad T_{n}(t)=\mathrm{e}^{-2 n^{2} t}
$$

Putting our solution together,

$$
u(x, t)=\sum_{n=1}^{\infty} b_{n} \mathrm{e}^{-2 n^{2} t} \sin (n x)
$$

That takes care of everything except for the initial condition:

$$
u(x, 0)=20=\sum_{n=1}^{\infty} b_{n} \sin (n x)
$$

Therefore,

$$
b_{n}=\frac{2}{\pi} \int_{0}^{\pi} 20 \sin (n x) d x=\left(\left.\frac{-40}{\pi n} \cos (n x)\right|_{0} ^{\pi}=-\frac{40}{\pi n}\left((-1)^{n}-1\right)=\left\{\begin{array}{r}
80 / n \pi \text { if } n \text { odd } \\
0 \text { if } n \text { even }
\end{array}\right.\right.
$$

Using only the odd indices then $n=2 k-1$, we get

$$
u(x, t)=\frac{80}{\pi} \sum_{k=1}^{\infty} \mathrm{e}^{-2(2 k-1)^{2} t} \frac{\sin ((2 k-1) x}{2 k-1}
$$

4.1.2(c) Solve the heat equation if $L=2$, the two ends are insulated, the initial temperature is given by the piecewise function $g(x)$ below.

$$
\begin{aligned}
u_{t} & =4 u_{x x}, \quad 0<x<2 \\
u(x, 0) & =g(x) \\
u_{x}(0, t) & =0 \\
u_{x}(2, t) & =0
\end{aligned}
$$

SOLUTION: Separate variables and get the eigenfunctions. Because we have $X^{\prime}(0)=0$ and $X^{\prime}(2)=0$, let's keep the constant 4 with T.

$$
X T^{\prime}=4 X^{\prime \prime} T \quad \Rightarrow \quad \frac{T^{\prime}}{4 T}=\frac{X^{\prime \prime}}{X}=-\lambda
$$

Therefore,

$$
\begin{array}{cc}
X^{\prime \prime}+\lambda X=0 & T^{\prime}+4 \lambda T=0 \\
X^{\prime}(0)=X^{\prime}(2)=0
\end{array}
$$

For the BVP in X, we know that we have two cases: $\lambda_{0}=0$ with $X_{0}(x)=1$, and the more normal case $\lambda_{n}=(n \pi / 2)^{2}$ and $X_{n}(x)=\cos (n \pi x / 2)$.
Changing the DE in T now that we have λ (two cases):

$$
\begin{array}{ll}
T^{\prime}+0=0 & T^{\prime}+4\left(n^{2} \pi^{2} / 4\right) T=0 \\
T_{0}(t)=1 & T^{\prime}=-n^{2} \pi^{2} T \\
T_{n}(t)=\mathrm{e}^{-n^{2} \pi^{2} t}
\end{array}
$$

Putting our solution together,

$$
u(x, t)=b_{0}+\sum_{n=1}^{\infty} b_{n} \mathrm{e}^{-n^{2} \pi^{2} t} \cos (n \pi x / 2)
$$

That takes care of everything except for the initial condition:

$$
u(x, 0)=g(x)=b_{0}+\sum_{n=1}^{\infty} b_{n} \cos (n \pi x / 2)
$$

We compute as usual:

$$
\begin{gathered}
b_{0}=\frac{a_{0}}{2}=\frac{1}{2} \frac{2}{2} \int_{0}^{2} g(x) \cos (n \pi x / 2) d x=\frac{1}{2} \int_{0}^{1} 10 d x=5 \\
b_{n}=\frac{2}{2} \int_{0}^{2} g(x) \cos (n \pi x / 2) d x=10 \int_{0}^{1} \cos (n \pi x / 2) d x=\frac{20}{\pi n} \sin (n \pi / 2)
\end{gathered}
$$

We might try to "simplify" that expression more, but it's OK to leave it as is.
4.1.3(a) Solve the heat equation if $L=\pi$, the initial temperature is uniformly 100 degrees, with BCs given below.

$$
\begin{array}{rlr}
u_{t} & =u_{x x}, \quad 0<x<\pi \\
u(x, 0) & =100 & \\
u(0, t) & =0 & \\
u_{x}(\pi, t) & =0 &
\end{array}
$$

SOLUTION: Separate variables and get the eigenfunctions in X since $X(0)=0$ and $X^{\prime}(\pi)=0$.

$$
X T^{\prime}=X^{\prime \prime} T \quad \Rightarrow \quad \frac{T^{\prime}}{T}=\frac{X^{\prime \prime}}{X}=-\lambda
$$

Therefore,

$$
\begin{array}{cc}
X^{\prime \prime}+\lambda X=0 & \\
X(0)=0 & T^{\prime}+\lambda T=0 \\
X^{\prime}(\pi)=0 &
\end{array}
$$

For the BVP in X, we have BC2, so

$$
\lambda_{n}=\left(\frac{(2 n-1)}{2}\right)^{2} \quad \text { with } \quad X_{n}(x)=\sin \left(\frac{(2 n-1) x}{2}\right)
$$

Now, $T_{n}(t)=\mathrm{e}^{-\lambda_{n} t}$, so that

$$
u(x, t)=\sum_{n=1}^{\infty} d_{n} \mathrm{e}^{-(2 n-1)^{2} t / 4} \sin \left(\frac{(2 n-1) x}{2}\right)
$$

Finally, $u_{x}(0, t)=100$, so we can compute the d_{n} 's:

$$
100=\sum_{n=1}^{\infty} d_{n} \sin \left(\frac{(2 n-1) x}{2}\right)
$$

Therefore,

$$
\begin{gathered}
d_{n}=100 \frac{2}{\pi} \int_{0}^{\pi} \sin \left(\frac{(2 n-1) x}{2}\right) d x=-\frac{400}{(2 n-1) \pi}(\cos ((2 n-1) \pi / 2)-1)=\frac{400}{(2 n-1) \pi} \\
u(x, t)=\sum_{n=1}^{\infty} \frac{400}{(2 n-1) \pi} \mathrm{e}^{-(2 n-1)^{2} t / 4} \sin \left(\frac{(2 n-1) x}{2}\right)
\end{gathered}
$$

Section 4.2

4.2.1(c) Solve the wave equation with length $L=2$, and the initial and boundary conditions shown (ends are nailed down).

$$
\begin{aligned}
u_{t t} & =5 u_{x x}, \quad 0<x<2, t>0 \\
u(x, 0) & =0 \\
u_{t}(x, 0) & =3 \\
u(0, t) & =0 \\
u(2, t) & =0
\end{aligned}
$$

SOLUTION: Separate variables and get the eigenfunctions. Because we have $X(0)=0$ and $X(2)=0$, let's keep the constant 5 with T.

$$
X T^{\prime \prime}=5 X^{\prime \prime} T \quad \Rightarrow \quad \frac{T^{\prime}}{5 T}=\frac{X^{\prime \prime}}{X}=-\lambda
$$

Therefore,

$$
\begin{array}{cc}
X^{\prime \prime}+\lambda X=0 & T^{\prime \prime}+5 \lambda T=0 \\
X(0)=0 & T(0)=0 \\
X(2)=0 & T^{\prime}(0)=3 \\
& \text { (Special ICs here) }
\end{array}
$$

For the BVP in X, we know that $\lambda_{n}=n^{2} \pi^{2} / 4$ and $X_{n}(x)=\sin (n \pi x / 2)$.
Changing the DE in T now that we have λ,

$$
T^{\prime \prime}+\frac{5}{4} n^{2} \pi^{2} T=0 \quad \Rightarrow \quad r= \pm \frac{\sqrt{5} n \pi}{2} i= \pm \omega_{n} i
$$

We see that $T_{n}(t)=c_{n} \cos \left(\omega_{n} t\right)+d_{n} \sin \left(\omega_{n} t\right)$. For $T_{n}(0)=0$, we must have $c_{n}=0$. For the other condition, we'll need the full solution.
Putting our solution together,

$$
u(x, t)=\sum_{n=1}^{\infty} \sin (n x)\left[0 \cdot \cos \left(\omega_{n} t\right)+d_{n} \sin \left(\omega_{n} t\right)\right]=\sum_{n=1}^{\infty} d_{n} \sin (n x) \sin \left(\omega_{n} t\right)
$$

That takes care of everything except for the initial velocity:

$$
u_{t}(x, 0)=3=\sum_{n=1}^{\infty} \omega_{n} d_{n} \sin (n x) \quad \Rightarrow \quad \omega_{n} d_{n}=\frac{2}{2} \int_{0}^{2} 3 \sin (n x) d x
$$

Therefore,

$$
d_{n}=\frac{3}{\omega_{n}} \cdot \frac{\cos (2 n)-1}{n}
$$

These expressions don't simplify much, so we'll leave them as is.
4.2.2(c) Solve the wave equation.

$$
\begin{aligned}
u_{t t} & =4 u_{x x}, \quad 0<x<\pi, t>0 \\
u(x, 0) & =1 \\
u_{t}(x, 0) & =x \\
u_{x}(0, t) & =0 \\
u_{x}(\pi, t) & =0
\end{aligned}
$$

SOLUTION: Separate variables and get the eigenfunctions. Because we have $X^{\prime}(0)=0$ and $X^{\prime}(\pi)=0$, let's keep the constant 4 with T.

$$
X T^{\prime \prime}=4 X^{\prime \prime} T \Rightarrow \frac{T^{\prime \prime}}{4 T}=\frac{X^{\prime \prime}}{X}=-\lambda
$$

Therefore,

$$
\begin{array}{cc}
X^{\prime \prime}+\lambda X=0 & T^{\prime \prime}+4 \lambda T=0 \\
X^{\prime}(0)=0 & \text { (Can't say anything else) } \\
X^{\prime}(\pi)=0 &
\end{array}
$$

For the BVP in X, we know that $\lambda_{n}=n^{2}$ and $X_{n}(x)=\cos (n x)$.
In this case, we also have $\lambda_{0}=0$ with $X_{0}(x)=1$.
Changing the DE in T now that we have two cases for λ,

$$
\begin{array}{ll}
T^{\prime \prime}=0 & T^{\prime \prime}+4 n^{2} T=0 \\
T_{0}(t)=c_{0}+d_{0} t & r= \pm 2 n i \\
T_{n}(t)=c_{n} \cos (2 n t)+d_{n} \sin (2 n t)
\end{array}
$$

The full solution is therefore below, and we go ahead and include the velocity:

$$
\begin{aligned}
u(x, t) & =c_{0}+d_{0} t+\sum_{n=1}^{\infty} \cos (n x)\left[c_{n} \cos (2 n t)+d_{n} \sin (2 n t)\right] \\
u_{t}(x, t) & =d_{0}+\sum_{n=1}^{\infty} \cos (n x)\left[-2 n c_{n} \sin (2 n t)+2 n d_{n} \cos (2 n t)\right]
\end{aligned}
$$

Substitute in our initial conditions. First, $u(x, 0)=1$:

$$
1=c_{0}+\sum_{n=1}^{\infty} c_{n} \cos (n x) \quad \Rightarrow \quad \begin{aligned}
& c_{0}=1 \\
& c_{n}=0 \text { for } n=1,2, \ldots
\end{aligned}
$$

Next is initial velocity, $u_{t}(x, 0)=x$

$$
x=d_{0}+\sum_{n=1}^{\infty} 2 n d_{n} \cos (n x) \quad \Rightarrow \quad d_{0}=\frac{1}{\pi} \int_{0}^{\pi} x d x=\frac{\pi}{2}
$$

The d_{n} terms don't simplify too much (use integration by parts to evaluate):

$$
2 n d_{n}=\frac{2}{\pi} \int_{0}^{\pi} x \cos (n x) d x \quad \begin{array}{lcc}
& + & \cos (n x) \\
- & 1 & \sin (n x) / n \\
& +0 & -\cos (n x) / n^{2}
\end{array}
$$

Just the integral evaluates to:

$$
\left(\frac{x \sin (n x)}{n}+\left.\frac{\cos (n x)}{n^{2}}\right|_{0} ^{\pi}=\left(0+\frac{(-1)^{n}}{n^{2}}\right)-\left(0+\frac{1}{n^{2}}\right)=\left\{\begin{aligned}
-2 / n^{2} & \text { if } n \text { odd } \\
0 & \text { if } n \text { even }
\end{aligned}\right.\right.
$$

so if n is odd, $d_{n}=-2 /\left(n^{3} \pi\right)$.

$$
u(x, t)=1+\frac{\pi}{2} t-\frac{2}{\pi} \sum_{k=1}^{\infty} \frac{1}{(2 k-1)^{3}} \cos (n x) \sin (2 n t)
$$

