
SOLUTIONS to the review

1. • Define “eigenvalue” (and eigenfunction) in the context of a linear operator L.

SOLUTION: Let L be a linear operator. If there is a constant λ and non-zero
function y so that L(y) = λy, then λ is an eigenvalue, and y is the corresponding
eigenfunction.

• Given the definition, how is y′′ + λy = 0 an eigenvalue problem?

SOLUTION: L(y) = −y′′.

2. What does it mean for a PDE to be well-posed?

SOLUTION: Three things- (i) A solution exists, (ii) The solution is unique, and (iii)
The problem is stable.

3. Solve by using ODE methods: uxy = x− y
SOLUTION: Integrate with respect to y, then with respect to x:

ux = xy − 1

2
y2 + f1(x)

where f1(x) is an arbitrary function of x. Integrate with respect to x:

u(x, y) =
1

2
x2y − 1

2
xy2 +

∫
f1(x) dx+ g(y)

4. Solve by using ODE methods: uy + xu = 2

SOLUTION: Think of this like a first order linear DE, but be sure to distinguish
between the variables- In this case, y is the independent variable, so the x is treated as
a constant. Therefore, the integrating factor is exy. Multiply both sides by that, and
continue:

∂

∂y

(
e3xyu

)
= 2exy ⇒ exyu =

2

x
exy + g(x)⇒ u(x, y) =

2

x
+ g(x)e−xy x 6= 0

5. Find all solutions to uy = 2x (using ODE methods) that also satisfies u(x, 3) = sin(x).

SOLUTION: u(x, y) = 2xy + f(x), so

u(x, 3) = 6x+ f(x) = sin(x) ⇒ f(x) = sin(x)− 6x

Therefore, u(x, y) = 2xy + sin(x)− 6x.

6. Suppose we’re looking for product solutions to ux +uy = 0. Then we set u = XY , and
with appropriate algebra, we get

X ′

X
= −Y

′

Y
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What is the justification in setting these equal to a constant?

SOLUTION: We’re thinking that f(x) = g(y), for all x and y. In particular, the
equation must be true for y = y∗, or f(x) = g(y∗) = λ. (And in a similar way,
g(y) = f(x∗) = λ). Therefore, both functions must be equal to the same constant.

7. Suppose we are asked to solve the eigenvalue problem

y′′ + λy = 0
y(a) = y(b) = 0

(a) Suppose we want to change the variable from a < x < b to z = L
b−a(x− a).

i. Justify:
dy

dx
=
dy

dz

dz

dx
SOLUTION: This is the chain rule. y will be a function of z, and z is a
function of x.

dy

dx
=
dy

dz

L

b− a
ii. Write the BVP in terms of y, z:

SOLUTION: It’s important to keep track of variables. The original equation
is with respect to x, so by using our substitutions:

d2y

dz2
L2

(b− a)2
+ λy = 0 ⇒ d2y

dz2
+ ωy = 0

with homogeneous boundary conditions in z: y(0) = y(1) = 0.

(b) Notice that we changed the interval so that 0 < z < L. Use this technique to
solve y′′ + λy = 0 with y(−1) = y(1) = 0.

SOLUTION: With the substitution z = 1
2
(x + 1), our interval changes from x ∈

[−1, 1] to z ∈ [0, 1]. We’ll keep the original λ in place this time to get

d2y

dz2
+ 4λy = 0 ⇒ y′′ + ωy = 0

with y(0) = y(1) = 0. We know the eigenvalues and eigenfunctions:

ωn = n2π2 yn(z) = sin(nπz)

Conversion back to λn, x will give:

λn =
n2π2

4
yn(x) = sin

(
nπ

2
(x+ 1)

)

8. Is the problem well posed? (You may decide in terms of existence and uniqueness
only):

y′′ + y′ − 2y = 0, y(0) = 0, y′(1) = 0, 0 ≤ x ≤ 1
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SOLUTION: Use the characteristic equation: r2 + r− 2 = 0, which gives r = −2, 1, so
that

y(x) = C1e
−2x + C2e

x

Using the boundary conditions, we should see that there is a unique solution (us-
ing Cramer’s rule, for instance, or by looking at the determinant of the coefficients).
Therefore, this problem is well posed.

9. For each operator below, either prove that it is linear, or show that it is not linear:

(a) L(u) = yux − x2uy + 2u

SOLUTION: Each of the individual terms is linear, so we expect the sum to be
linear as well:

L(c1u1 + c2u2) = y(c1u1 + c2u2)y − x2(c1u1 + c2u2)x + 2(c1u1 + c2u2)

Therefore, break everything out before we combine by factoring C1, C2:

= c1y(u1)y + c2y(u2)y − c1x2(u1)x − c2x2(u2)x + c12u1 + c22u2

= c1(y(u1)y − x2(u1)x + 2u1) + c2(y(u2)y − x2(u2)x + 2u2) = c1L(u1) + c2L(u2)

(b) L(u) = u− uxxt + uutt

SOLUTION: We suspect this will not be linear because of the uutt term, so we
only check that cL(u) = L(cu):

cL(u) = cu− cuxxt + cuuttt

L(cu) = cu− cuxxt + (cu)(cutt) 6= cL(u)

10. Suppose that u1 solves ut − uxx = f(x, t) and u2 solves ut − uxx = g(x, t) for some
functions f, g. Find a solution u3 that will solve the equation ut − uxx = 5f(x, t) −
7g(x, t).

SOLUTION: Think about the linearity of the operator. For example, if L(u) = f , then
L(2u) = 2f . So in this case, we see that

L(5u1 − 7u2) = 5L(u1)− 7L(u2) = 5f(x, t)− 7g(x, t).

11. Classify the heat equation, the wave equation and Laplace’s equation as hyperbolic,
parabolic, or elliptic using the definition (that is, show your work).

SOLUTION: You should show that the heat equation is parabolic, the wave equation
is hyperbolic, and Laplace’s equation is elliptic (see page 43 of the text for more info).
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12. Use ODE techniques to find the general solution of the following, where u = u(x, y):

yuxy + 2ux = x

Hint: The equation can be expressed first as (...)x = x.

SOLUTION: From the hint,

(yuy + 2u)x = x ⇒ yuy + u =
1

2
x2 + f(y)

for some arbitrary function f . Divide by y to get a first order linear DE in u(y):

uy +
2

y
u =

x2

2y
+
f(y)

y

We see the that the integrating factor is

e
∫

2/y dy = e2 ln(y) = y2

Multiply both sides, and re-write the left side:

(y2u)y =
x2

2
y + yf(y)

Antidifferentiate with respect to y:

y2u =
1

4
x2y2 + F (y) + g(x) where F (y) =

∫
yf(y) dy

Finally, solve for u:

u(x, y) =
1

4
x2 +

F (y) + g(x)

y2
for arbitrary F, g

13. Given your solution to the previous problem, find a particular solution to the boundary
conditions:

u(x, 1) = 0 u(0, y) = 0

SOLUTION: For the first constraint, we get

u(x, 1) =
1

4
x2 + F (1) + g(x) = 0 ⇒ g(x) = −1

4
x2 − F (1)

From the second constraint,

u(0, y) =
F (y) + g(0)

y2
= 0 ⇒ F (y) = g(0) = C

Put these together (with F (1) = C as well), to get

u(x, y) =
1

4
x2 +

1

y2

(
C − 1

4
x2 − C

)
=

1

4
x2 − x2

4y2
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14. Solve the following PDE using separation of variables. You do not need to justify your
solutions to the underlying eigenvalue problem.

ut = uxx 0 < x < 2, t > 0
u(0, t) = 0
u(2, t) = 0
u(x, 0) = 3 sin(πx)− 4 sin((3π/2)x), 0 < x < 2

SOLUTION: Break out the two ODEs as usual:

XT ′ = X ′′T ⇒ T ′

T
=
X ′′

X
= −λ

so that
T ′ + λT = 0 X ′′ + λX = 0 with X(0) = X(2) = 0

The eigenvalue problem in X is using BC 1, so we get (for X(x))

λn =
n2π2

4
Xn(x) = sin

(
nπx

2

)
Now that λn is set, we can also solve for T :

Tn(t) = e−λnt = e−n
2π2t/4

The full solution so far is:

u(x, t) =
∞∑
n=1

Cne−n
2π2t/4 sin

(
nπx

2

)

To solve for the initial condition, by observation we see C2 = 3 and C3 = −4, so that
the solution is:

u(x, t) = 3e−π
2t sin (πx)− 4e−9π

2t/4 sin
(

3πx

2

)
15. Separate the PDE into a system of ODEs (you do NOT need to solve each ODE, just

set them up).

(a) uxx − xuy + xu = 0

X ′′

xX
= λ ⇒ X ′′ − λxX = 0

fracY ′Y + 1 = λ ⇒ Y ′ + (1− λY = 0

(b) ut = uxx + uyy

SOLUTION: First remember that u(x, y, t) = XY T this time around, so we get

XY T ′ = X ′′Y T +XY ′′T ⇒ T ′

T
=
X ′′

X
+
Y ′′

Y
= −λ1
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so that

T ′ + λ1T = 0 and
X ′′

X
= −Y

′′

Y
− λ1 = −λ2

In X and Y we then get

X ′′ + λ2X = 0 and Y ′′ + (λ1 − λ2)Y = 0

16. Solve the PDE by using separation of variables: y2ux + x2uy = 0

SOLUTION: Using our usual technique, we should get

1

x2
X ′′

X
= − 1

y2
Y ′

Y
= −λ

We construct the two ODEs:

dX

dx
= −λx2X dY

dy
= λy2Y

Now these are each separable as well (easier than linear?):∫ 1

X
dX = −

∫
λx2 dx ⇒ ln |X| = −λx3/3 + C1

and ∫ 1

Y
dY =

∫
λy2 dy ⇒ ln |Y | = λy3/3 + C2

Exponentiate, then multiply together to get:

uλ(x, y) = Ce(λ/3)(y
3−x3)

17. Solve the following eigenvalue problem: y′′ + 2y′ + (λ + 1)y = 0, with y(0) = 0 and
y(π) = 0.

SOLUTION: r2 + 2r + (λ+ 1) = 0, so (r2 + 2r + 1) + λ = 0, or

r = −1±
√
−λ

Three cases for the discriminant:

• Case 1: λ < 0, so r = r1, r2 distinct real numbers, and y(x) = C1e
r1x + C2e

r2x.
Putting in the initial conditions:

C1 + C2 = 0
C1e

πr1 + C2e
πr2 = 0

det

∣∣∣∣∣ 1 1
eπr1 eπr2

∣∣∣∣∣ = eπr1 − eπr2 6= 0

Since the determinant is not zero, the only solution to the system of equations is
C1 = C2 = 0.
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• Case 2: λ = 0, so r = −1,−1 and y(x) = e−x(C1 + C2x)

Putting in the initial conditions leads to C1 = 0 and C2 = 0.

• Case 3: λ > 0, so r = −1±
√
λ i = −1± βi

Now the solution is y(x) = e−x (C1 cos(βx) + sin(βx)). The first initial condition
forces C1 = 0, the second condition:

C2e
−π sin(βπ) = 0

so that sin(βπ) = 0 when β = 1, 2, 3, . . ., or when λn = n2 and yn(x) = sin(nx).

18. (a) Given the eigenvalue problem y′′ + λy = 0 with y(0) = 0 and y(L) = 0, and if
we are told that λ1, λ2 are two distinct eigenvalue with associated eigenfunctions
y1, y2, then show that

(λ1 − λ2)
∫ L

0
y1y2 dx =

∫ L

0
(y1y

′′
2 − y′′1y2) dx

SOLUTION: Since λ1, y1 are an eigenvalue/eigenvector pair for y′′+λy = 0, then
L(y1) = λ1y1, or

−y′′1 = λ1y1 and − y′′2 = λ2y2

Making these substitutions gives you the integral on the right.

(b) Use integration by parts to show∫ L

0
y1y
′′
2 dx = y1y

′
2|
L
0 −

∫ L

0
y′1y
′
2 dx

Using a table,
sign u dv
+ y1 y′′2
− y′1 y′2

we get the expression to the right.

19. The steady state or equilibrium solution to the heat equation is a solution that
does not depend on time (that is, u = u(x)).

(a) Find all the steady state solutions to the heat equation if the left end of the rod
is held at 3 degrees, and the right end is held at 10 degrees.

SOLUTION: The dimensions of the rod are not given, so we’ll assume that 0 <
x < L. Therefore, we solve:

uxx = 0
u(0) = 3
u(L) = 10

⇒ u(x) = C1x+ C2 ⇒ u(x) =
7

L
x+ 3
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(b) Repeat the previous problem, but the left end is insulated and the right end is
held at 10 degrees.

SOLUTION: We still get u(x) = C1x + C2, so u′(x) = C1. If we want that to be
zero, C1 = 0 and C2 will be 10, or u(x) = 10.

20. Given the heat equation with nonhomogeneous boundary conditions:

ut = uxx
u(x, 0) = f(x)
u(0, t) = 10
u(5, t) = 30

(a) Find an equilibrium solution (call it v(x) rather than u(x)) that satisfies the
nonhomogeneous boundary conditions.

SOLUTION: We want v(0) = 10 and v(5) = 30, so like the previous problem, we
get

v(x) = C1x+ C2 ⇒ v(x) = 4x+ 10

(b) Define w(x, t) = u(x, t)−v(x). Write the heat equation in terms of w rather than
u. Verify that w solves the heat equation with homogeneous boundary conditions.

SOLUTION: We note that

wt = ut + 0 wxx = uxx + 0

(the second zero is because v′′(x) = 0) so that if u satisfies the heat equation, so
does w.

For the initial and boundary conditions,

w(x, 0) = f(x)− 4x− 10

with

w(0, t) = u(0, t)− v(0) = 10− 10 = 0 w(5, t) = u(5, t)− v(5) = 30− 30 = 0

(c) Remark: Using this, the overall original solution is u(x, t) = w(x, t) + v(x).

21. Solve the heat equation intial-boundary-value problem

ut = uxx
u(x, 0) = 3 + cos(2πx)
ux(0, t) = 0
ux(3, t) = 0

You do not need to justify your solutions to the underlying eigenvalue problem.

SOLUTION: You should find that

u(x, t) = 3 + e−4π
2 t cos(2πx)
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22. Solve the wave equation intial-boundary-value problem

utt = uxx
u(x, 0) = 5 sin(2x)− 7 sin(4x)
ut(x, 0) = 0
u(0, t) = u(π, t) = 0

You do not need to justify your solutions to the underlying eigenvalue problem.

SOLUTION: You should find that

u(x, t) = 5 sin(2x) cos(2t)− 7 sin(4x) cos(4t)

23. Solve Laplace’s equation:
uxx + uyy = 0
u(x, 0) = sin(3x)
u(x, 1) = sin(x)
u(0, y) = u(π, y) = 0

You do not need to justify your solutions to the underlying eigenvalue problem.

SOLUTION:

X ′′Y +XY ′′ = 0 ⇒ X ′′

X
= −Y

′′

Y
= −λ

Therefore, we have the pair of ODEs:

X ′′ + λX = 0
X(0) = X(π) = 0

Y ′′ − λY = 0
X(x)Y (0) = sin(3x)
X(x)Y (1) = sin(x)

From the left equations, we get λn = n2 for n = 1, 2, 3, . . ., with Xn(x) = sin(nx). Now
that λn > 0, that fixes the solutions for Y (y)

r2 − λn = 0 ⇒ r = ±
√
λn = ±n

Therefore, we have

Yn1(y) = cosh(ny) Yn2(y) = sinh(ny)

Our solutions are of the form:

u(x, t) =
∞∑
n=1

Cn cosh(ny) sin(nx) +
∞∑
n=1

Dn sinh(ny) sin(nx)

Now we look at the other boundary conditions:

u(x, 0) = sin(3x) =
∞∑
n=1

Cn sin(nx) + 0 ⇒ C3 = 1
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and all other Cn = 0. Checking the other boundary condition:

u(x, 1) = cosh(3) sin(3x) +
∞∑
n=1

Dn sinh(n) sin(nx)

From the left, we’ll need n = 1 for sin(x) term, but we’ll also need n = 3 to cancel out
the sin(3x) terms. Therefore, we can reduce the problem by setting all other Dn = 0
so that

u(x, 1) = cosh(3) sin(3x) +D1 sinh(1) sin(x) +D3 sinh(3) sin(3x)

We want the sum of the coefficients with sin(3x) to be 0:

cosh(3) +D3 sinh(3) = 0 ⇒ D3 = −cosh(3)

sinh(3)

and the coefficient in front of sin(x) to be 1:

D1 sinh(1) = 1 ⇒ D1 =
1

sinh(1)

Now we have our full solution:

u(x, y) = cosh(3y) sin(3x)− cosh(3)

sinh(3)
sinh(3y) sin(3x) +

1

sinh(1)
sinh(y) sin(x)
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