Homework Set 1

1. Partial differential equations can be classified many ways. A second order linear PDE in two variables is any function $u(x, y)$ whose PDE can be expressed as:

$$
A u_{x x}+B u_{x y}+C U_{y y}+D u_{x}+E u_{y}+F u=G
$$

where A, B, C, D, E, F, G can be constants or functions of x, y. For example,

$$
u_{t t}=\mathrm{e}^{-t} u_{x}+\sin (t)
$$

is a linear second order DE. Furthermore, if $G=0$, the equation is called homogeneous. For each equation below, state the order of the DE, state whether the PDE is linear or nonlinear, and whether it is homogeneous or not homogeneous:
(a) $u_{t}=u_{x}^{2}+2 u_{x}+u$
(b) $u_{t}=u_{x x}+2 u_{x}+u$
(c) $u_{t t}=u u_{x x x x}+\mathrm{e}^{-t}$
2. How many solutions can you find to the PDE $u_{t}=u_{x x}$? You might try a couple different approaches: (i) Assume u is a function of one variable only, and (ii) Assume $u=\mathrm{e}^{a x+b t}$.
3. If $u_{1}(x, y)$ and $u_{2}(x, y)$ each satisfy the DE:

$$
A u_{x x}+B u_{x y}+C U_{y y}+D u_{x}+E u_{y}+F u=G
$$

Then is it true that the sum satisfies it as well?
4. Review Question, Calc 2: Compute the following integrals

$$
\int \cos (t) d t \quad \int \cos ^{2}(t) d t \quad \int \cos ^{3}(t) d t \quad \int \cos (t) \sin (t) d t
$$

5. Review Question, Calc 3: Recall that the line integral can be expressed a couple of different ways, depending on how we set things up. For example, here are two ways of defining the same thing:
If $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$, and the curve C is defined using the parametric function $\mathbf{r}(t)$, then

$$
\int_{C} f(\mathbf{r}(t)) d s=\int_{a}^{b} f(\mathbf{r}(t))\left|\mathbf{r}^{\prime}(t)\right| d t
$$

Exercise: Evaluate $\int_{C} x^{2}+x y d s$, where C is the upper half of the unit circle.
6. $\left.{ }^{*}\right)$ Review Question, Calc 3: If \mathbf{F} is a vector field on a smooth curve C defined by $\mathbf{r}(t)$, then the work done by \mathbf{F} in moving a particle along the curve C is given by

$$
W=\int_{C} \mathbf{F} \cdot d \mathbf{r}
$$

Exercise: Find the work done using

$$
\mathbf{F}=\langle x, y, x y\rangle \quad \mathbf{r}(t)=\langle\cos (t), \sin (t), t\rangle \quad 0 \leq t \leq \pi
$$

7. From Section 1.2:
(a) $\left(^{*}\right) 1.1 .1(\mathrm{a}, \mathrm{b})$
(b) 1.2.2: As a "hint", start with Equation 1.2.4, and follow that derivation.
(c) 8
