Homework: Chapter 8

- 1. For each of the following problems, find an appropriate function w that satisfies the boundary conditions, then let u = v + w and convert the PDE to a PDE in v. Do not solve the PDE.
 - (a) $u_t = ku_{xx} + x \quad 0 < x < L$ PDE $u_x(0,t) = 1, \quad u(L,t) = t$ BCs (b) $\begin{array}{l} u_t = k u_{xx} + x \quad 0 < x < L \\ u_x(0,t) = t, \quad u_x(L,t) = t^2 \end{array}$ PDE BCs(c) $\begin{aligned} & u_{tt} = c^2 u_{xx} + xt \quad 0 < x < L \\ & u(0,t) = 1, \quad u(L,t) = t \end{aligned}$ PDE BCs (d) $u_{tt} = c^2 u_{xx} + xt \quad 0 < x < L$ $u_x(0,t) = 0, \quad u_x(L,t) = 1$ PDE BCs
- 2. Solve 1(a) and (b) if the initial condition is u(x,0) = f(x).
- 3. Solve:

PDE
$$u_t = k u_{xx} + e^{-t}$$
 $0 < x < \pi$
BCs $u_x(0,t) = 0$, $u_x(\pi,t) = 0$
IC $u(x,0) = \cos(2x)$