Homework: Chapter 8 (Solutions)

1. For each of the following problems, find an appropriate function w that satisfies the boundary conditions, then let $u=v+w$ and convert the PDE to a PDE in v. Do not solve the PDE.
(a)

$$
\begin{array}{ll}
\mathrm{PDE} & u_{t}=k u_{x x}+x \quad 0<x<L \\
\mathrm{BCs} & u_{x}(0, t)=1, \quad u(L, t)=t
\end{array}
$$

SOLUTION: Let $w=x+t-L$, and $u=v+w$. Then the PDE in v is given by:

$$
\begin{array}{ll}
\mathrm{PDE} & v_{t}=k v_{x x}+x-1 \quad 0<x<L \\
\mathrm{BCs} & v_{x}(0, t)=0, \quad v(L, t)=0
\end{array}
$$

(b)

$$
\begin{array}{ll}
\mathrm{PDE} & u_{t}=k u_{x x}+x \quad 0<x<L \\
\mathrm{BCs} & u_{x}(0, t)=t, \quad u_{x}(L, t)=t^{2}
\end{array}
$$

SOLUTION: Let $u=v+w$, where

$$
w(x, t)=\frac{1}{2 L}\left(t^{2}-t\right) x^{2}+x t
$$

Then the PDE in v is given by:

$$
\begin{array}{ll}
\mathrm{PDE} & v_{t}=k v_{x x}+x-\left(\left(\frac{2 t-1}{2 L}\right) x^{2}+x-k \frac{t^{2}-t}{L}\right) \quad 0<x<L \\
\mathrm{BCs} & v_{x}(0, t)=0, \quad v(L, t)=0
\end{array}
$$

(c)

$$
\begin{array}{ll}
\mathrm{PDE} & u_{t t}=c^{2} u_{x x}+x t \quad 0<x<L \\
\mathrm{BCs} & u(0, t)=1, \quad u(L, t)=t
\end{array}
$$

SOLUTION: Let $u=v+w$, where

$$
w(x, t)=\frac{t-1}{L} x+1
$$

Then the PDE in v is given by:

$$
\begin{array}{ll}
\mathrm{PDE} & v_{t t}=c^{2} v_{x x}+x t \quad 0<x<L \\
\mathrm{BCs} & v(0, t)=0, \quad v(L, t)=0
\end{array}
$$

(d)

$$
\begin{array}{ll}
\mathrm{PDE} & u_{t t}=c^{2} u_{x x}+x t \quad 0<x<L \\
\mathrm{BCs} & u_{x}(0, t)=0, \quad u_{x}(L, t)=1
\end{array}
$$

SOLUTION: Let $u=v+w$, where

$$
w(x, t)=\frac{1}{2 L} x^{2}
$$

Then the PDE in v is given by:

$$
\begin{array}{ll}
\mathrm{PDE} & v_{t t}=c^{2} v_{x x}+\frac{c^{2}}{L}+x t \quad 0<x<L \\
\mathrm{BCs} & v_{x}(0, t)=0, \quad v_{x}(L, t)=0
\end{array}
$$

2. Solve 1 (a) and (b) if the initial condition is $u(x, 0)=f(x)$.

1(a) Continuing from where we left off,
SOLUTION: Let $w=x+t-L$, and $u=v+w$. Then the PDE in v is given by:

$$
\begin{array}{ll}
\mathrm{PDE} & v_{t}=k v_{x x}+x-1 \quad 0<x<L \\
\mathrm{BCs} & v_{x}(0, t)=0, \quad v(L, t)=0
\end{array}
$$

You should find that the eigenvalues/functions are

$$
\lambda_{n}=\left(\frac{(2 n-1) \pi}{2 L}\right)^{2} \quad X_{n}=\cos \left(\frac{(2 n-1) \pi x}{2 L}\right)
$$

If we write $k v_{x x}+x-1$ as $k v_{x x}+Q(x, t)$, then we want to expand Q in terms of our eigenfunction basis:

$$
-1+x=\sum_{n=1}^{\infty} q_{n} \cos \left(\frac{(2 n-1) \pi x}{2 L}\right) \quad q_{n}=\frac{2}{L} \int_{0}^{L}(x-1) \cos \left(\frac{(2 n-1) \pi x}{2 L}\right) d x
$$

Furthermore, we'll need an initial condition for the ODEs:

$$
v(x, 0)=f(x)-x+L=\sum_{n=1}^{\infty} v_{n}(0) \cos \left(\frac{(2 n-1) \pi x}{2 L}\right)
$$

or:

$$
v_{n}(0)=\frac{2}{L} \int_{0}^{L}(f(x)-x-L) \cos \left(\frac{(2 n-1) \pi x}{2 L}\right) d x
$$

We've computed all the pieces- Use the ansatz for $v(x, t)$ (as a series), and we get the system of ODEs:

$$
v_{n}^{\prime}(t)+k \lambda_{n} v_{n}(t)=q_{n} \quad \Rightarrow \quad v_{n}(t)=\frac{q_{n}}{\lambda_{n}}+C \mathrm{e}^{-k \lambda t}
$$

where $C=v_{n}(0)-q_{n} / \lambda_{n}$

1(b) Continuing where we left off:
SOLUTION: Let $u=v+w$, where

$$
w(x, t)=\frac{1}{2 L}\left(t^{2}-t\right) x^{2}+x t
$$

Then the PDE in v is given by:

$$
\begin{array}{ll}
\mathrm{PDE} & v_{t}=k v_{x x}+x-\left(\left(\frac{2 t-1}{2 L}\right) x^{2}+x-k \frac{t^{2}-t}{L}\right) \quad 0<x<L \\
\mathrm{BCs} & v_{x}(0, t)=0, \quad v(L, t)=0
\end{array}
$$

The eigenvalues/functions are:

$$
\lambda_{n}=\left(\frac{n \pi}{L}\right)^{2} \quad X_{n}=\cos \left(\frac{n \pi}{L}\right)
$$

(I am basically doing a copy/paste from the previous problem- You may leave your answer in general form unless otherwise requested)
If we write $k v_{x x}+\ldots$ as $k v_{x x}+Q(x, t)$, then we want to expand Q in terms of our eigenfunction basis:

$$
Q(x, t)=\sum_{n=0}^{\infty} q_{n} \cos \left(\frac{n \pi x}{L}\right) \quad\left\{\begin{array}{l}
q_{0}=\frac{1}{L} \int_{0}^{L} Q(x, t) d x \\
q_{n}=\frac{2}{L} \int_{0}^{L} Q(x, t) \cos \left(\frac{n \pi x}{L}\right) d x
\end{array}\right.
$$

Furthermore, we'll need an initial condition for the ODEs:

$$
v(x, 0)=f(x)-0=\sum_{n=0}^{\infty} v_{n}(0) \cos \left(\frac{n \pi x}{L}\right)
$$

or:

$$
\left\{\begin{array}{l}
v_{0}(0)=\frac{1}{L} \int_{0}^{L} f(x) d x \\
v_{n}(0)=\frac{2}{L} \int_{0}^{L} f(x) \cos \left(\frac{n \pi x}{L}\right) d x
\end{array}\right.
$$

We've computed all the pieces- Use the ansatz for $v(x, t)$ (as a series), and we get the system of ODEs:

$$
v_{n}^{\prime}(t)+k \lambda_{n} v_{n}(t)=q_{n} \quad \Rightarrow \quad v_{n}(t)=\frac{q_{n}}{\lambda_{n}}+C \mathrm{e}^{-k \lambda t}
$$

where $C=v_{n}(0)-q_{n} / \lambda_{n}$
3. Solve:

$$
\begin{array}{ll}
\mathrm{PDE} & u_{t}=k u_{x x}+\mathrm{e}^{-t} \quad 0<x<\pi \\
\mathrm{BCs} & u_{x}(0, t)=0, \quad u_{x}(\pi, t)=0 \\
\mathrm{IC} & u(x, 0)=\cos (2 x)
\end{array}
$$

SOLUTION: As before, I can almost just copy/paste the previous solution. Here's a summary of the solution. The eigenvalues/functions are:

$$
\lambda_{n}=n^{2}, \quad n=0,1,2, \ldots \quad X_{n}=\cos (n x)
$$

On the right side, we now have $Q(x, t)$ as just a function of t, which is constant with respect to the expansion in x. The first term of the cosine expansion is also a constantTherefore,

$$
Q(x, t)=\mathrm{e}^{-t}+\sum_{n=1}^{\infty} 0 \cos (n x)
$$

where we emphasize that all of the coefficients q_{n} are zero (except the first).
For the initial condition,

$$
u(x, 0)=\cos (2 x)=\sum_{n=0}^{\infty} A_{n}(0) \cos (n x)
$$

or $A_{2}(0)=1$ and the rest are zero.
We've computed all the pieces- Use the ansatz for $u(x, t)$ (as a series), and we get the system of ODEs- We first write this in general form, then we'll break it out:

$$
A_{n}^{\prime}(t)+k \lambda_{n} A_{n}(t)=q_{n}
$$

Now, for $n=0$, we have:

$$
A_{0}^{\prime}(t)=\mathrm{e}^{-t} \quad \Rightarrow \quad A_{0}(t)=-\mathrm{e}^{-t}+C \quad \Rightarrow \quad A_{0}(t)=1-\mathrm{e}^{-t}
$$

For $n=2$, we have:

$$
A_{2}^{\prime}(t)+4 k A_{2}(t)=0 \quad A_{2}(0)=1 \quad \Rightarrow \quad A_{2}(t)=\mathrm{e}^{-4 k t}
$$

All of the remaining ODEs will have zero as the solution. Therefore, the solution to this heat equation problem is:

$$
u(x, t)=1-\mathrm{e}^{-t}+\mathrm{e}^{-4 k t} \cos (2 x)
$$

