Homework, Sections 3.4-3.5

1. From the text: $3.4: 6,9,12\left(^{*}\right), 13$.

Hint on 13: Let $u(x, t)=\phi(x, t)+v(x, t)$ where ϕ is the simplest function that will satisfy the boundary conditions:

$$
\phi(0, t)=A(t) \quad \phi(L, t)=0
$$

Next, we should be able to build the PDE in v so that it has homogeneous boundary conditions.
2. From the text: $3.5: 1,3.6: 1$
3. (Practice with integration by parts) Consider the integral:

$$
\int_{a}^{b} f^{\prime \prime}(x) \mathrm{e}^{-k x} d x
$$

Rewrite this using integration by parts so that the integral only uses $f(x)$ itself.
4. Solve the following PDE using the method of eigenfunctions:

$$
\begin{array}{ll}
\mathrm{PDE} & u_{t}=u_{x x}+\sin (\pi x), \quad 0<x<1 \\
\mathrm{BCs} & u(0, t)=0 \quad u(1, t)=0 \\
\mathrm{ICs} & u(x, 0)=1
\end{array}
$$

