## Exercise Set 1 to Replace 4.2-4.4

1. Let $f(w)=\mathrm{e}^{-w}$. Show by direct computation that a solution to the wave equation, $u_{t t}=c^{2} u_{x x}$, can be written as the sum of a right and left traveling wave,

$$
u(x, t)=f(x-c t)+f(x+c t)
$$

2. (4.2.1) Consider the wave equation,

$$
u_{t t}=c^{2} u_{x x}-g
$$

Find the equilibrium solution, $u_{e}(x)$, if $u_{e}(0)=u_{e}(L)=0$.
3. (Continuing from the previous problem) Show that $v(x, t)=u(x, t)-u_{e}(x)$ satisfies the homogeneous wave equation, $u_{t t}=c^{2} u_{x x}$.
4. Solve the wave equation (using separation of variables):

$$
\begin{array}{rll}
u_{t t} & =4 u_{x x} & 0<x<\pi \\
u(0, t)=0 & u(\pi, t)=0 & \\
u(x, 0) & =\sin (x) & \\
u_{t}(x, 0) & =0 &
\end{array}
$$

5. Solve the wave equation (using separation of variables):

$$
\begin{array}{rll}
u_{t t} & =25 u_{x x} & 0<x<2 \\
u(0, t)=0 & u(2, t)=0 \\
u(x, 0) & =0 \\
u_{t}(x, 0) & =\sin (\pi x)+\frac{1}{10} \sin (2 \pi x)
\end{array}
$$

6. Use Maple or Mathematica to show your solutions to $\# 4$ and 5. Show either an animation (animated in time) or a three dimensional plot of the solution, $u(x, t)$.
7. Solve the wave equation (using separation of variables):

$$
\begin{array}{rll}
u_{t t} & =4 u_{x x}-k u_{t} & 0<x<1, k>0 \\
u(0, t)=0 & u(1, t)=0 & \\
u(x, 0) & =f(x) & \\
u_{t}(x, 0) & =0 &
\end{array}
$$

For this problem, assume further that $k$ is a very small number. Any coefficients in your solution should be expressed as appropriate integrals.

