
Review Solutions, Final Exam

1. Solve the first order DEs:

(a) ut − 3ux = 0 with u(x, 0) = cos(x).

SOLUTION: We compare this with:

du

dt
= ut +

dx

dt
ux = 0

so that u solves the PDE if, on the curve defined by x(t) (the characteristic curve),
we have:

dx

dt
= −3 and

du

dt
= 0

so u(x(t), t) is constant on the curve, and the curve is: x = −3t+ x0. Therefore,
solving for x0 = x+ 3t, and with u(x(0), 0) = cos(x0), we get our full solution:

u(x, t) = cos(x+ 3t)

(b) ut + xux = 1 with u(x, 0) = f(x).

SOLUTION: Same idea as the last problem, where

dx

dt
= x

du

dt
= 1

From the first equation,

1

x
dx = dt ⇒ ln(x) = t+ c ⇒ x = Aet = x0e

t

These are the characteristic curves. Along these curves, du/dt = 1, so that
u = t+ c, so that

u(x(0), 0) = 0 + c = 0 + f(x0) ⇒ u(x(t), t) = t+ f(xe−t)

NOTE: You can double-check yourself by verifying that this function does indeed
solve the PDE.

(c) ut + 3tux = u with u(x, 0) = f(x).

SOLUTION:
dx

dt
= 3t

du

dt
= u

From the first equation, x = 3
2
t2 + x0, and from the second equation, u = Aet.

From this, we see that

u(x(0), 0) = A = f(x0) ⇒ u(x, t) = f

(
x− 3

2
t2
)

et
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2. Questions about the Bessel functions Jm(z) and Ym(z):

(a) What ODE does Jm and Ym solve?

SOLUTION: These are solutions to the Bessel Equation of order m, given by (y
is a functions of z):

z2y′′ + zy′ + (z2 −m2)y = 0

(b) As z → 0, is there a limit for Jm and Ym?

SOLUTION: The Jm are bounded at zero- In fact, J0(0) = 1 and all others are 0.
The other function Ym becomes unbounded at z = 0.

(c) Going back to our spatial second order equation in φ, we can put that in SL form
so that we have orthogonal functions.

Be more specific about this- What integral is equal to zero?

SOLUTION: We want the SL form so we can get the weighting function. That
would be:

r(rφ′)′ + (λr2 −m2)φ = 0 ⇒ (rφ′)′ − m2

r
φ = −λrφ

Therefore, for m fixed,∫ a

0

Jm(
√
λmn1r)Jm(

√
λmn2r) r dr = 0

3. D’Alembert’s solution: Not on the exam.

4. Solve:
ut = kuxx + x 0 < x < L

subject to the boundary conditions: ux(0, t) = t, ux(L, t) = t2, and the initial condition
u(x, 0) = f(x).

SOLUTION: First we find a helper function to solve the boundary conditions, then we
use the method of eigenfunctions. So, let u = v +w, and let dw/dx be linear, running
from t to t2. That gives us:

w = tx+
1

2L
(t2 − t)x2

And with u = v + w, we rewrite the expressions:

ut = vt +

(
x+

1

2L
(2t− 1)x2

)
uxx = vxx +

1

L
(t2 − t)

so that ut = kuxx + x becomes

vt = kvxx + S(x, t)
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where
S(x, t) = x+ kwxx(x, t)− wt(x, t)

which doesn’t simplify by much, so we’ll leave it as S. Now, we have zero boundary
conditions, so our eigenvalues/functions are

λn =
(nπ
L

)2
φn(x) = cos

(nπx
L

)
Now we express the general solution as:

v(x, t) =
∞∑
n=0

An(t) cos
(nπx
L

)
where

v(x, 0) = u(x, 0)− w(x, 0) = f(x)− 0 = f(x) =
∞∑
n=0

An(0) cos
(nπx
L

)
so that

A0(0) =
1

L

∫ L

0

f(x) dx and An(0) =
2

L

∫ L

0

f(x) cos
(nπx
L

)
dx

We also can express S as a series:

S(x, t) =
∞∑
n=0

qn(t) cos
(nπx
L

)
so that

q0(t) =
1

L

∫ L

0

S(x, t) dx and qn(t) =
2

L

∫ L

0

S(x, t) cos
(nπx
L

)
Now we substitute the series for v into the PDE, and we get the infinite system of first
order ODEs:

∞∑
n=0

(A′n(t) + kλAn(t)− qn(t)) cos
(nπx
L

)
= 0

so that, for n = 0, 1, 2, 3, . . .,

A′n(t) + kλnAn(t) = qn(t)

so that

An(t) = An(0)e−kλnt + e−kλnt
∫ t

0

qn(τ)ekλnτ dτ

So finally,

u(x, t) =
∞∑
n=0

An(t) cos
(nπx
L

)
+ tx+

1

2L
(t2 − t)x2

3



5. Find a formula for the coefficient anm if

f(x, y) ∼
∞∑
n=1

∞∑
m=0

anm sin
(nπx
L

)
cos
(mπy
H

)
SOLUTION: You can write the integrals directly, or you can break them up. Notice
that we need to treat m = 0 differently than the rest of the coefficients.

If you want to step through the computations, one way might be:

f(x, y) =
∞∑
m=0

[
∞∑
n=1

anm sin
(nπx
L

)]
cos
(mπy
H

)
=

∞∑
m=0

Fm(x) cos
(mπy
H

)
This is a cosine series, so:

F0(x) =
1

H

∫ H

0

f(x, y) dy and Fm(x) =
2

H

∫ H

0

f(x, y) cos
(nπy
L

)
dy

Furthermore, since Fm(x) is a sine series, we have:

anm =
2

L

∫ L

0

Fm(x) sin
(nπx
L

)
dx

You may leave your answer in that form, or if you prefer, you can write your answer
in two dimensional form (with or without the previous stuff using Fm(x)):

an0 =
2

LH

∫ L

0

∫ H

0

f(x, y) sin
(nπx
L

)
dy dx

and the others:

anm =
4

LH

∫ L

0

∫ H

0

f(x, y) sin
(nπx
L

)
cos
(mπy
H

)
dy dx

6. (a) Show that if u, v are eigenfunctions which both satisfy the same homogeneous
boundary conditions:

β1φ+ β2∇φ · ~n = 0

then ∮
(u∇v − v∇u) · ~n ds = 0

SOLUTION: Substitute

∇v · ~n = −β1
β2
v and ∇u · ~n = −β1

β2
u

Then the integral becomes: ∮
−β1
β2
uv +

β1
β2
uv ds = 0

(This is related to showing that an operator is self-adjoint).
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(b) Let the operator be L = ∇2. Use the previous answer and Green’s formula to
show that, if φ1, φ2 are eigenfunctions for distinct eigenvalues, then φ1, φ2 are
orthogonal. Note that the eigenfunctions both satisfy the same homogeneous
boundary conditions.

SOLUTION: Green’s formula states that∫∫
R

u∇2v − v∇2u dx dy =

∮
(u∇v − v∇u) ds

Now, if we choose u = φλ1 and v = φλ2 , which are eigenfunctions to ∇2φ = −λφ,
then: ∫∫

R

φλ1∇2φλ2 − φλ2∇2φλ1 dx dy =

∫∫
R

−λ2φλ1φλ2 + λ1φλ2φλ1 dx dy =

(λ1 − λ2)
∫∫

R

φλ1φλ2 dx dy

And, from part (a) and Green’s Theorem, we have:∫∫
R

φλ1∇2φλ2 − φλ2∇2φλ1 dx dy =

∮
(φλ1∇φλ2 − φλ2∇φλ1) · ~nds = 0

Putting these two pieces together, we have

(λ1 − λ2)
∫∫

R

φλ1φλ2 dx dy = 0

so either λ1 = λ2 (which is not true), or the eigenfunctions are orthogonal.

7. Solve the Helmholtz equation

∇2φ+ λφ = 0, [0, 1]× [0, 1/4]

subject to:

φ(0, y) = 0 φ(x, 0) = 0 φx(1, y) = 0 φy(x, 1/4) = 0

SOLUTION: Separate variables so that φ(x, y) = XY , and

X ′′Y +XY ′′ = −λXY ⇒ X ′′

X
= −λ− Y ′′

Y
= −µ

Therefore,
X ′′ = −µX

X(0) = 0 X ′(1) = 0

Y ′′

Y
= −(λ− µ) = −τ

so that
Y ′′ = −τY, Y (0) = 0 Y ′(1/4) = 0

5



Now, you don’t have to go into a lot of detail, but you should at least mention that in
each case (for X and Y ), the constants µ and tau are both positive.

Now for X, the first BC means that we have a sine function. The second BC means:

X ′(1) = C2
√
µ cos(

√
µ) = 0

Therefore,

µn =

(
(2n− 1)π

2

)2

Xn = sin

(
(2n− 1)π

2
x

)
and in a similar vein,

τn = [(4m− 2)π]2 Ym = sin ((4m− 2)πy)

so that

λmn =

(
(2n− 1)π

2

)2

+ [(4m− 2)π]2

and

φmn(x, y) = sin

(
(2n− 1)π

2
x

)
sin ((4m− 2)πy)

8. Solve the heat equation on a disk with zero boundary conditions and initial condition
α(r, θ).

SOLUTION: Separate variables, since everything is homogeneous.

PDE ut = k∇2u
BCs u(a, θ, t) = 0 |u(0, θ, t)| <∞
ICs u(r, θ, 0) = α(r, θ)

We’ll have our now usual familiar separation, yielding Bessel functions in the radius.
Now let u(r, θ, t) = f(r)g(θ)h(t), and

fgh′ = k

[
1

r

∂

∂r
(rf ′gh) +

1

r2
fg′′h

]
Divide by kfgh and we get:

h′

kh
=

1

rf
(rf ′)′ +

1

r2
g′′

g
= −λ

Therefore, in time, we get h′ = −kλh, or h = e−kλt.

Continuing, we multiply by r2, and write:

g′′

g
= −λr2 − r

f
(rf ′)′ = −µ
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so that
g′′ = −µg

and finally we get our Bessel equation in f :

r2f ′′ + rf ′ + (λr2 − µ)f = 0

so we take mu = m2, and the solution is

fm = Jm(
√
λr)

With the BC, we have

Jm(
√
λa) = 0 ⇒ λ =

(zmn
a

)2
where zmn is the nth zero of the Bessel function of order m. The eigenfunction is

fmn = Jm(
√
λmnr)

Now we go to the angular equation:

g′′ = −m2g ⇒ g(θ) = c1 cos(mθ) + c2 sin(mθ) = c1g1m + c2g2m

Now, in shorthand, we might write:

u(r, θ, t) =
∞∑
m=0

∞∑
n=1

fmn(r)hmn(t)(Amng1m +Bmng2m)

We can compute the coefficients using the initial condition

α(r, θ) =
∞∑
m=0

[
∞∑
n=1

AmnJm(
√
λmnr)

]
cos(mθ) +

[
∞∑
n=1

BmnJm(
√
λmnr)

]
sin(mθ)

Now finish this up like we did above in Problem 5.

9. Solve Laplace’s equation on a box in 3d, with

0 ≤ x ≤ L, 0 ≤ y ≤ L, 0 ≤ z ≤ W

with boundary conditions:

ux(0, y, z) = 0 ux(L, y, z) = 0 uy(x, 0, z) = 0 uy(x, L, z) = 0 uz(x, y,W ) = 0

and

uz(x, y, 0) = 4 cos

(
3πx

L

)
cos

(
4πy

L

)
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SOLUTION: Let u = XY Z. Substituting into Laplace’s equation gives

X ′′

X
= −Y

′′

Y
− Z ′′

Z
= −λ

splitting off X we have:

X ′′ + λX = 0
X ′(0) = 0 X ′(L) = 0

Y ′′

Y
+
Z ′′

Z
= λ

Continuing in Y, Z we have

Y ′′

Y
= λ− Z ′′

Z
= −µ ⇒ Y ′′ + µY = 0

Y ′(0) = 0 Y ′(L) = 0
and

Z ′′

Z
= λ+ µ = τ

Therefore, lastly we have

Z ′′ − τZ = 0
Z ′(W ) = 0 Z ′(0) = f(x, y)

The eigenvalues/functions for X, Y are the familiar ones.

λm = m2π2/L2

Xm = cos
(
mπx
L

) µn = n2π2/L2

Yn = cos
(
nπx
L

) τmn = λm + µn
Zmn = cosh

(√
τmn(W − z)

)
Now, we use some shorthand to write the full solution, and put in the initial condition:

u(x, y, z) =
∞∑
m=0

∞∑
n=0

AmnXmYnZmn

∞∑
m=0

∞∑
n=0

(−Amn
√
τmn sinh(

√
τmn(W )) cos

(mπx
L

)
cos
(nπx
L

)
= 4 cos

(
3πx

L

)
cos

(
4πy

L

)
Therefore, the only nonzero coefficient is A34, and

A34 =
−4

√
τmn sinh(

√
τmn(W ))

10. Solve
PDE ut = uxx + 1 0 < x < 1
BCs ux(0, t) = 2 u(1, t) = 0
ICs u(x, 0) = 2x− 1

SOLUTION: First the helper function, then find the spatial eigenfunctions for a basis
for solution space, then write everything in terms of that basis resulting in an infinite
system of first order ODEs.
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• The helper function is w(x) = 2x− 2.

If we define u = v + w, then the PDE in v is:

PDE vt = vxx + 1 0 < x < 1
BCs vx(0, t) = 0 v(1, t) = 0
ICs v(x, 0) = (2x− 1)− (2x− 2) = 1

• The spatial eigenvalues will solve the BVP:

X ′′ + λX = 0 X ′(0) = 0 X(1) = 0

There was a little algebra trick we’ve used previously that helps a bit. Since the
function is zero at x = 1, we’ll write the functions as:

X(x) = C1 cos(
√
λ(x− 1)) + C2 sin(

√
λ(x− 1))

(or you could have used (1−x) as well). Now it’s a bit easier to get the coefficients,
with C1 = 0, and

X ′(0) = C2

√
λ cos(

√
λ) = 0 ⇒ λn =

(
(2n− 1)π

2

)2

And we now have our basis functions as the following:

Xn(x) = sin

(
(2n− 1)π

2
(x− 1)

)
• Now we assume

v(x, t) =
∞∑
n=1

An(t)Xn(x)

and substitute this into the PDE. Note that we’ll also need the series expansion
of 1:

1 =
∞∑
n=1

qn sin

(
(2n− 1)π

2
(x− 1)

)
⇒ qn =

−4

(2n− 1)π

Now reverting back to our shorthand notation, put everything back into the PDE
to get our system of ODEs:∑

A′n(t)Xn =
∑

(−λnAn)Xn +
∑

qnXn

so that
A′n(t) + λnAn(t) = qn

or
An(t) =

qn
λn

+ Ce−λnt
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What about An(0)? We use our initial condition for that-

v(x, 0) = 1 =
∑

An(0)Xn(x)

and we see that An(0) = qn = −4/(2(n− 1)π), so that

An(t) = qn

(
1

λn
+

(
1− 1

λn

)
e−λnt

)
Finally, we put it all back together:

u(x, t) =
∞∑
n=1

An(t)Xn(x) + 2x− 2
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