Review Solutions, Final Exam

1. Solve the first order DEs:
(a) $u_{t}-3 u_{x}=0$ with $u(x, 0)=\cos (x)$.

SOLUTION: We compare this with:

$$
\frac{d u}{d t}=u_{t}+\frac{d x}{d t} u_{x}=0
$$

so that u solves the PDE if, on the curve defined by $x(t)$ (the characteristic curve), we have:

$$
\frac{d x}{d t}=-3 \quad \text { and } \quad \frac{d u}{d t}=0
$$

so $u(x(t), t)$ is constant on the curve, and the curve is: $x=-3 t+x_{0}$. Therefore, solving for $x_{0}=x+3 t$, and with $u(x(0), 0)=\cos \left(x_{0}\right)$, we get our full solution:

$$
u(x, t)=\cos (x+3 t)
$$

(b) $u_{t}+x u_{x}=1$ with $u(x, 0)=f(x)$.

SOLUTION: Same idea as the last problem, where

$$
\frac{d x}{d t}=x \quad \frac{d u}{d t}=1
$$

From the first equation,

$$
\frac{1}{x} d x=d t \quad \Rightarrow \quad \ln (x)=t+c \quad \Rightarrow \quad x=A \mathrm{e}^{t}=x_{0} \mathrm{e}^{t}
$$

These are the characteristic curves. Along these curves, $d u / d t=1$, so that $u=t+c$, so that

$$
u(x(0), 0)=0+c=0+f\left(x_{0}\right) \quad \Rightarrow \quad u(x(t), t)=t+f\left(x \mathrm{e}^{-t}\right)
$$

NOTE: You can double-check yourself by verifying that this function does indeed solve the PDE.
(c) $u_{t}+3 t u_{x}=u$ with $u(x, 0)=f(x)$.

SOLUTION:

$$
\frac{d x}{d t}=3 t \quad \frac{d u}{d t}=u
$$

From the first equation, $x=\frac{3}{2} t^{2}+x_{0}$, and from the second equation, $u=A \mathrm{e}^{t}$. From this, we see that

$$
u(x(0), 0)=A=f\left(x_{0}\right) \quad \Rightarrow \quad u(x, t)=f\left(x-\frac{3}{2} t^{2}\right) \mathrm{e}^{t}
$$

2. Questions about the Bessel functions $J_{m}(z)$ and $Y_{m}(z)$:
(a) What ODE does J_{m} and Y_{m} solve?

SOLUTION: These are solutions to the Bessel Equation of order m, given by (y is a functions of z):

$$
z^{2} y^{\prime \prime}+z y^{\prime}+\left(z^{2}-m^{2}\right) y=0
$$

(b) As $z \rightarrow 0$, is there a limit for J_{m} and Y_{m} ?

SOLUTION: The J_{m} are bounded at zero- In fact, $J_{0}(0)=1$ and all others are 0 . The other function Y_{m} becomes unbounded at $z=0$.
(c) Going back to our spatial second order equation in ϕ, we can put that in SL form so that we have orthogonal functions.
Be more specific about this- What integral is equal to zero?
SOLUTION: We want the SL form so we can get the weighting function. That would be:

$$
r\left(r \phi^{\prime}\right)^{\prime}+\left(\lambda r^{2}-m^{2}\right) \phi=0 \quad \Rightarrow \quad\left(r \phi^{\prime}\right)^{\prime}-\frac{m^{2}}{r} \phi=-\lambda r \phi
$$

Therefore, for m fixed,

$$
\int_{0}^{a} J_{m}\left(\sqrt{\lambda_{m n_{1}}} r\right) J_{m}\left(\sqrt{\lambda_{m n_{2}}} r\right) r d r=0
$$

3. D'Alembert's solution: Not on the exam.
4. Solve:

$$
u_{t}=k u_{x x}+x \quad 0<x<L
$$

subject to the boundary conditions: $u_{x}(0, t)=t, u_{x}(L, t)=t^{2}$, and the initial condition $u(x, 0)=f(x)$.
SOLUTION: First we find a helper function to solve the boundary conditions, then we use the method of eigenfunctions. So, let $u=v+w$, and let $d w / d x$ be linear, running from t to t^{2}. That gives us:

$$
w=t x+\frac{1}{2 L}\left(t^{2}-t\right) x^{2}
$$

And with $u=v+w$, we rewrite the expressions:

$$
u_{t}=v_{t}+\left(x+\frac{1}{2 L}(2 t-1) x^{2}\right) \quad u_{x x}=v_{x x}+\frac{1}{L}\left(t^{2}-t\right)
$$

so that $u_{t}=k u_{x x}+x$ becomes

$$
v_{t}=k v_{x x}+S(x, t)
$$

where

$$
S(x, t)=x+k w_{x x}(x, t)-w_{t}(x, t)
$$

which doesn't simplify by much, so we'll leave it as S. Now, we have zero boundary conditions, so our eigenvalues/functions are

$$
\lambda_{n}=\left(\frac{n \pi}{L}\right)^{2} \quad \phi_{n}(x)=\cos \left(\frac{n \pi x}{L}\right)
$$

Now we express the general solution as:

$$
v(x, t)=\sum_{n=0}^{\infty} A_{n}(t) \cos \left(\frac{n \pi x}{L}\right)
$$

where

$$
v(x, 0)=u(x, 0)-w(x, 0)=f(x)-0=f(x)=\sum_{n=0}^{\infty} A_{n}(0) \cos \left(\frac{n \pi x}{L}\right)
$$

so that

$$
A_{0}(0)=\frac{1}{L} \int_{0}^{L} f(x) d x \quad \text { and } \quad A_{n}(0)=\frac{2}{L} \int_{0}^{L} f(x) \cos \left(\frac{n \pi x}{L}\right) d x
$$

We also can express S as a series:

$$
S(x, t)=\sum_{n=0}^{\infty} q_{n}(t) \cos \left(\frac{n \pi x}{L}\right)
$$

so that

$$
q_{0}(t)=\frac{1}{L} \int_{0}^{L} S(x, t) d x \quad \text { and } \quad q_{n}(t)=\frac{2}{L} \int_{0}^{L} S(x, t) \cos \left(\frac{n \pi x}{L}\right)
$$

Now we substitute the series for v into the PDE, and we get the infinite system of first order ODEs:

$$
\sum_{n=0}^{\infty}\left(A_{n}^{\prime}(t)+k \lambda A_{n}(t)-q_{n}(t)\right) \cos \left(\frac{n \pi x}{L}\right)=0
$$

so that, for $n=0,1,2,3, \ldots$,

$$
A_{n}^{\prime}(t)+k \lambda_{n} A_{n}(t)=q_{n}(t)
$$

so that

$$
A_{n}(t)=A_{n}(0) \mathrm{e}^{-k \lambda_{n} t}+\mathrm{e}^{-k \lambda_{n} t} \int_{0}^{t} q_{n}(\tau) \mathrm{e}^{k \lambda_{n} \tau} d \tau
$$

So finally,

$$
u(x, t)=\sum_{n=0}^{\infty} A_{n}(t) \cos \left(\frac{n \pi x}{L}\right)+t x+\frac{1}{2 L}\left(t^{2}-t\right) x^{2}
$$

5. Find a formula for the coefficient $a_{n m}$ if

$$
f(x, y) \sim \sum_{n=1}^{\infty} \sum_{m=0}^{\infty} a_{n m} \sin \left(\frac{n \pi x}{L}\right) \cos \left(\frac{m \pi y}{H}\right)
$$

SOLUTION: You can write the integrals directly, or you can break them up. Notice that we need to treat $m=0$ differently than the rest of the coefficients.
If you want to step through the computations, one way might be:

$$
f(x, y)=\sum_{m=0}^{\infty}\left[\sum_{n=1}^{\infty} a_{n m} \sin \left(\frac{n \pi x}{L}\right)\right] \cos \left(\frac{m \pi y}{H}\right)=\sum_{m=0}^{\infty} F_{m}(x) \cos \left(\frac{m \pi y}{H}\right)
$$

This is a cosine series, so:

$$
F_{0}(x)=\frac{1}{H} \int_{0}^{H} f(x, y) d y \quad \text { and } \quad F_{m}(x)=\frac{2}{H} \int_{0}^{H} f(x, y) \cos \left(\frac{n \pi y}{L}\right) d y
$$

Furthermore, since $F_{m}(x)$ is a sine series, we have:

$$
a_{n m}=\frac{2}{L} \int_{0}^{L} F_{m}(x) \sin \left(\frac{n \pi x}{L}\right) d x
$$

You may leave your answer in that form, or if you prefer, you can write your answer in two dimensional form (with or without the previous stuff using $F_{m}(x)$):

$$
a_{n 0}=\frac{2}{L H} \int_{0}^{L} \int_{0}^{H} f(x, y) \sin \left(\frac{n \pi x}{L}\right) d y d x
$$

and the others:

$$
a_{n m}=\frac{4}{L H} \int_{0}^{L} \int_{0}^{H} f(x, y) \sin \left(\frac{n \pi x}{L}\right) \cos \left(\frac{m \pi y}{H}\right) d y d x
$$

6. (a) Show that if u, v are eigenfunctions which both satisfy the same homogeneous boundary conditions:

$$
\beta_{1} \phi+\beta_{2} \nabla \phi \cdot \vec{n}=0
$$

then

$$
\oint(u \nabla v-v \nabla u) \cdot \vec{n} d s=0
$$

SOLUTION: Substitute

$$
\nabla v \cdot \vec{n}=-\frac{\beta_{1}}{\beta_{2}} v \quad \text { and } \quad \nabla u \cdot \vec{n}=-\frac{\beta_{1}}{\beta_{2}} u
$$

Then the integral becomes:

$$
\oint-\frac{\beta_{1}}{\beta_{2}} u v+\frac{\beta_{1}}{\beta_{2}} u v d s=0
$$

(This is related to showing that an operator is self-adjoint).
(b) Let the operator be $L=\nabla^{2}$. Use the previous answer and Green's formula to show that, if ϕ_{1}, ϕ_{2} are eigenfunctions for distinct eigenvalues, then ϕ_{1}, ϕ_{2} are orthogonal. Note that the eigenfunctions both satisfy the same homogeneous boundary conditions.
SOLUTION: Green's formula states that

$$
\iint_{R} u \nabla^{2} v-v \nabla^{2} u d x d y=\oint(u \nabla v-v \nabla u) d s
$$

Now, if we choose $u=\phi_{\lambda_{1}}$ and $v=\phi_{\lambda_{2}}$, which are eigenfunctions to $\nabla^{2} \phi=-\lambda \phi$, then:

$$
\begin{gathered}
\iint_{R} \phi_{\lambda_{1}} \nabla^{2} \phi_{\lambda_{2}}-\phi_{\lambda_{2}} \nabla^{2} \phi_{\lambda_{1}} d x d y=\iint_{R}-\lambda_{2} \phi_{\lambda_{1}} \phi_{\lambda_{2}}+\lambda_{1} \phi_{\lambda_{2}} \phi_{\lambda_{1}} d x d y= \\
\left(\lambda_{1}-\lambda_{2}\right) \iint_{R} \phi_{\lambda_{1}} \phi_{\lambda_{2}} d x d y
\end{gathered}
$$

And, from part (a) and Green's Theorem, we have:

$$
\iint_{R} \phi_{\lambda_{1}} \nabla^{2} \phi_{\lambda_{2}}-\phi_{\lambda_{2}} \nabla^{2} \phi_{\lambda_{1}} d x d y=\oint\left(\phi_{\lambda_{1}} \nabla \phi_{\lambda_{2}}-\phi_{\lambda_{2}} \nabla \phi_{\lambda_{1}}\right) \cdot \vec{n} d s=0
$$

Putting these two pieces together, we have

$$
\left(\lambda_{1}-\lambda_{2}\right) \iint_{R} \phi_{\lambda_{1}} \phi_{\lambda_{2}} d x d y=0
$$

so either $\lambda_{1}=\lambda_{2}$ (which is not true), or the eigenfunctions are orthogonal.
7. Solve the Helmholtz equation

$$
\nabla^{2} \phi+\lambda \phi=0, \quad[0,1] \times[0,1 / 4]
$$

subject to:

$$
\phi(0, y)=0 \quad \phi(x, 0)=0 \quad \phi_{x}(1, y)=0 \quad \phi_{y}(x, 1 / 4)=0
$$

SOLUTION: Separate variables so that $\phi(x, y)=X Y$, and

$$
X^{\prime \prime} Y+X Y^{\prime \prime}=-\lambda X Y \quad \Rightarrow \quad \frac{X^{\prime \prime}}{X}=-\lambda-\frac{Y^{\prime \prime}}{Y}=-\mu
$$

Therefore,

$$
\begin{array}{rll}
X^{\prime \prime} & =-\mu X \\
X(0)=0 & X^{\prime}(1)=0
\end{array} \quad \frac{Y^{\prime \prime}}{Y}=-(\lambda-\mu)=-\tau
$$

so that

$$
Y^{\prime \prime}=-\tau Y, \quad Y(0)=0 \quad Y^{\prime}(1 / 4)=0
$$

Now, you don't have to go into a lot of detail, but you should at least mention that in each case (for X and Y), the constants μ and tau are both positive.
Now for X, the first BC means that we have a sine function. The second BC means:

$$
X^{\prime}(1)=C_{2} \sqrt{\mu} \cos (\sqrt{\mu})=0
$$

Therefore,

$$
\mu_{n}=\left(\frac{(2 n-1) \pi}{2}\right)^{2} \quad X_{n}=\sin \left(\frac{(2 n-1) \pi}{2} x\right)
$$

and in a similar vein,

$$
\tau_{n}=[(4 m-2) \pi]^{2} \quad Y_{m}=\sin ((4 m-2) \pi y)
$$

so that

$$
\lambda_{m n}=\left(\frac{(2 n-1) \pi}{2}\right)^{2}+[(4 m-2) \pi]^{2}
$$

and

$$
\phi_{m n}(x, y)=\sin \left(\frac{(2 n-1) \pi}{2} x\right) \sin ((4 m-2) \pi y)
$$

8. Solve the heat equation on a disk with zero boundary conditions and initial condition $\alpha(r, \theta)$.
SOLUTION: Separate variables, since everything is homogeneous.

$$
\begin{array}{ll}
\mathrm{PDE} & u_{t}=k \nabla^{2} u \\
\mathrm{BCs} & u(a, \theta, t)=0 \quad|u(0, \theta, t)|<\infty \\
\mathrm{ICs} & u(r, \theta, 0)=\alpha(r, \theta)
\end{array}
$$

We'll have our now usual familiar separation, yielding Bessel functions in the radius. Now let $u(r, \theta, t)=f(r) g(\theta) h(t)$, and

$$
f g h^{\prime}=k\left[\frac{1}{r} \frac{\partial}{\partial r}\left(r f^{\prime} g h\right)+\frac{1}{r^{2}} f g^{\prime \prime} h\right]
$$

Divide by $k f g h$ and we get:

$$
\frac{h^{\prime}}{k h}=\frac{1}{r f}\left(r f^{\prime}\right)^{\prime}+\frac{1}{r^{2}} \frac{g^{\prime \prime}}{g}=-\lambda
$$

Therefore, in time, we get $h^{\prime}=-k \lambda h$, or $h=\mathrm{e}^{-k \lambda t}$.
Continuing, we multiply by r^{2}, and write:

$$
\frac{g^{\prime \prime}}{g}=-\lambda r^{2}-\frac{r}{f}\left(r f^{\prime}\right)^{\prime}=-\mu
$$

so that

$$
g^{\prime \prime}=-\mu g
$$

and finally we get our Bessel equation in f :

$$
r^{2} f^{\prime \prime}+r f^{\prime}+\left(\lambda r^{2}-\mu\right) f=0
$$

so we take $m u=m^{2}$, and the solution is

$$
f_{m}=J_{m}(\sqrt{\lambda} r)
$$

With the BC, we have

$$
J_{m}(\sqrt{\lambda} a)=0 \quad \Rightarrow \quad \lambda=\left(\frac{z_{m n}}{a}\right)^{2}
$$

where $z_{m n}$ is the $n^{\text {th }}$ zero of the Bessel function of order m. The eigenfunction is

$$
f_{m n}=J_{m}\left(\sqrt{\lambda_{m n}} r\right)
$$

Now we go to the angular equation:

$$
g^{\prime \prime}=-m^{2} g \quad \Rightarrow \quad g(\theta)=c_{1} \cos (m \theta)+c_{2} \sin (m \theta)=c_{1} g_{1 m}+c_{2} g_{2 m}
$$

Now, in shorthand, we might write:

$$
u(r, \theta, t)=\sum_{m=0}^{\infty} \sum_{n=1}^{\infty} f_{m n}(r) h_{m n}(t)\left(A_{m n} g_{1 m}+B_{m n} g_{2 m}\right)
$$

We can compute the coefficients using the initial condition

$$
\alpha(r, \theta)=\sum_{m=0}^{\infty}\left[\sum_{n=1}^{\infty} A_{m n} J_{m}\left(\sqrt{\lambda_{m n}} r\right)\right] \cos (m \theta)+\left[\sum_{n=1}^{\infty} B_{m n} J_{m}\left(\sqrt{\lambda_{m n}} r\right)\right] \sin (m \theta)
$$

Now finish this up like we did above in Problem 5.
9. Solve Laplace's equation on a box in 3d, with

$$
0 \leq x \leq L, \quad 0 \leq y \leq L, \quad 0 \leq z \leq W
$$

with boundary conditions:
$u_{x}(0, y, z)=0 \quad u_{x}(L, y, z)=0 \quad u_{y}(x, 0, z)=0 \quad u_{y}(x, L, z)=0 \quad u_{z}(x, y, W)=0$
and

$$
u_{z}(x, y, 0)=4 \cos \left(\frac{3 \pi x}{L}\right) \cos \left(\frac{4 \pi y}{L}\right)
$$

SOLUTION: Let $u=X Y Z$. Substituting into Laplace's equation gives

$$
\frac{X^{\prime \prime}}{X}=-\frac{Y^{\prime \prime}}{Y}-\frac{Z^{\prime \prime}}{Z}=-\lambda
$$

splitting off X we have:

$$
\begin{array}{cc}
X^{\prime \prime}+\lambda X=0 & \frac{Y^{\prime \prime}}{Y}+\frac{Z^{\prime \prime}}{Z}=\lambda \\
X^{\prime}(0)=0 \quad X^{\prime}(L)=0
\end{array}
$$

Continuing in Y, Z we have

$$
\frac{Y^{\prime \prime}}{Y}=\lambda-\frac{Z^{\prime \prime}}{Z}=-\mu \quad \Rightarrow \quad \begin{gathered}
Y^{\prime \prime}+\mu Y=0 \\
Y^{\prime}(0)=0 \quad Y^{\prime}(L)=0 \quad \text { and } \quad \frac{Z^{\prime \prime}}{Z}=\lambda+\mu=\tau
\end{gathered}
$$

Therefore, lastly we have

$$
\begin{gathered}
Z^{\prime \prime}-\tau Z=0 \\
Z^{\prime}(W)=0 \quad Z^{\prime}(0)=f(x, y)
\end{gathered}
$$

The eigenvalues/functions for X, Y are the familiar ones.

$$
\begin{array}{lll}
\lambda_{m}=m^{2} \pi^{2} / L^{2} & \mu_{n}=n^{2} \pi^{2} / L^{2} & \tau_{m n}=\lambda_{m}+\mu_{n} \\
X_{m}=\cos \left(\frac{m \pi x}{L}\right) & Y_{n}=\cos \left(\frac{n \pi x}{L}\right) & Z_{m n}=\cosh \left(\sqrt{\tau_{m n}}(W-z)\right)
\end{array}
$$

Now, we use some shorthand to write the full solution, and put in the initial condition:

$$
\begin{gathered}
u(x, y, z)=\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} A_{m n} X_{m} Y_{n} Z_{m n} \\
\sum_{m=0}^{\infty} \sum_{n=0}^{\infty}\left(-A_{m n} \sqrt{\tau_{m n}} \sinh \left(\sqrt{\tau_{m n}}(W)\right) \cos \left(\frac{m \pi x}{L}\right) \cos \left(\frac{n \pi x}{L}\right)=4 \cos \left(\frac{3 \pi x}{L}\right) \cos \left(\frac{4 \pi y}{L}\right)\right.
\end{gathered}
$$

Therefore, the only nonzero coefficient is A_{34}, and

$$
A_{34}=\frac{-4}{\sqrt{\tau_{m n}} \sinh \left(\sqrt{\tau_{m n}}(W)\right)}
$$

10. Solve

$$
\begin{array}{rlr}
\mathrm{PDE} & u_{t}=u_{x x}+1 \quad 0<x<1 \\
\mathrm{BCs} & u_{x}(0, t)=2 \quad u(1, t)=0 \\
\mathrm{ICs} & u(x, 0)=2 x-1
\end{array}
$$

SOLUTION: First the helper function, then find the spatial eigenfunctions for a basis for solution space, then write everything in terms of that basis resulting in an infinite system of first order ODEs.

- The helper function is $w(x)=2 x-2$.

If we define $u=v+w$, then the PDE in v is:

$$
\begin{array}{rll}
\mathrm{PDE} & v_{t}=v_{x x}+1 & 0<x<1 \\
\mathrm{BCs} & v_{x}(0, t)=0 & v(1, t)=0 \\
\mathrm{ICs} & v(x, 0)=(2 x-1)-(2 x-2)=1
\end{array}
$$

- The spatial eigenvalues will solve the BVP:

$$
X^{\prime \prime}+\lambda X=0 \quad X^{\prime}(0)=0 \quad X(1)=0
$$

There was a little algebra trick we've used previously that helps a bit. Since the function is zero at $x=1$, we'll write the functions as:

$$
X(x)=C_{1} \cos (\sqrt{\lambda}(x-1))+C_{2} \sin (\sqrt{\lambda}(x-1))
$$

(or you could have used ($1-x$) as well). Now it's a bit easier to get the coefficients, with $C_{1}=0$, and

$$
X^{\prime}(0)=C_{2} \sqrt{\lambda} \cos (\sqrt{\lambda})=0 \quad \Rightarrow \quad \lambda_{n}=\left(\frac{(2 n-1) \pi}{2}\right)^{2}
$$

And we now have our basis functions as the following:

$$
X_{n}(x)=\sin \left(\frac{(2 n-1) \pi}{2}(x-1)\right)
$$

- Now we assume

$$
v(x, t)=\sum_{n=1}^{\infty} A_{n}(t) X_{n}(x)
$$

and substitute this into the PDE. Note that we'll also need the series expansion of 1 :

$$
1=\sum_{n=1}^{\infty} q_{n} \sin \left(\frac{(2 n-1) \pi}{2}(x-1)\right) \Rightarrow q_{n}=\frac{-4}{(2 n-1) \pi}
$$

Now reverting back to our shorthand notation, put everything back into the PDE to get our system of ODEs:

$$
\sum A_{n}^{\prime}(t) X_{n}=\sum\left(-\lambda_{n} A_{n}\right) X_{n}+\sum q_{n} X_{n}
$$

so that

$$
A_{n}^{\prime}(t)+\lambda_{n} A_{n}(t)=q_{n}
$$

or

$$
A_{n}(t)=\frac{q_{n}}{\lambda_{n}}+C \mathrm{e}^{-\lambda_{n} t}
$$

What about $A_{n}(0)$? We use our initial condition for that-

$$
v(x, 0)=1=\sum A_{n}(0) X_{n}(x)
$$

and we see that $A_{n}(0)=q_{n}=-4 /(2(n-1) \pi)$, so that

$$
A_{n}(t)=q_{n}\left(\frac{1}{\lambda_{n}}+\left(1-\frac{1}{\lambda_{n}}\right) \mathrm{e}^{-\lambda_{n} t}\right)
$$

Finally, we put it all back together:

$$
u(x, t)=\sum_{n=1}^{\infty} A_{n}(t) X_{n}(x)+2 x-2
$$

