
Review SOLUTIONS: Exam 2

1. True or False? (And give a short answer)

(a) If f(x) is piecewise smooth on [0, L], we can find a series representation using either a sine or a
cosine series.

SOLUTION: TRUE. If we use a sine series, the series will converge to the odd extension of f on
[−L,L], then to the periodic extension of that over the reals (with the usual caveat about points
at which the periodic extension has a jump discontinuity).

If we use a cosine series (with the constant term), the series will converge to the even extension
of f on [−L,L], then to the periodic extension of that over the reals (again with the caveat about
the jump discontinuities).

(b) If f(x) is piecewise smooth on [−L,L], we can find a series representation using either a sine or
a cosine series.

SOLUTION: FALSE. On the full interval [−L,L] we need both sines and cosines to get a complete
set of functions (that is, both sines and cosines are needed to make a basis for this vector space).
In other words, we must assume the form:

f(x) ∼ a0 +

∞∑
n=1

an cos
(nπx
L

)
+

∞∑
n=1

bn sin
(nπx
L

)
(Note that we’re assume on these problems that the arguments for the sine and cosine have nπx/L
in them... Without that assumption, the statement could be true).

(c) The sine series for f(x) on [−L,L] will converge to the odd extension of f .

SOLUTION: FALSE. The sine series for f(x) will converge to the odd part of f , which is given
by:

fodd =
1

2
(f(x)− f(−x))

If f itself was odd, the statement would be true (but TRUE would mean the statement is true
for all f). A similar argument can be made about cosines and the even part of f .

The key point of this question is to be sure you know the difference between the even/odd part
of f and the even/odd extension of f .

(d) The Gibbs phenomenon (an overshoot of the Fourier series) occurs only when we use a finite
number of terms in the Fourier series to represent a function that is discontinuous.

SOLUTION: TRUE. If we use an infinite number of terms, there is no ”overshoot”, and the
series converges to f(x) where f is continuous, and 1

2 (f(x+) + f(x−)) where f is discontinuous.
Therefore, the only time that you can get this overshooting phenomenon is when you use a finite
number of terms in the sum.

(e) The functions sin(nx) for n = 1, 2, 3, · · · are orthogonal to the functions cos(mx) for m =
0, 1, 2, 3, · · · on the interval [0, π].

SOLUTION: FALSE. For example, consider the following integral of the product of sin(x) with 1
(or cos(0x)): ∫ π

0

sin(x) · 1 dx = cos(x)|π1 = 2

Similarly, (you wouldn’t need to compute this without a table):∫ π

0

sin(x) cos(2x) dx = −2

3

We should note, however, that if the interval is changed to [−π, π], then the statement would have
been TRUE.
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2. Short Answer:

(a) Questions about when the Fourier series will be continuous:

i. Let −L ≤ x ≤ L. For what functions f can we guarantee that the Fourier series of f will be
continuous (at every real number)?
SOLUTION: For the Fourier series to be continuous in the interior of (−L,L), the function f
must be as well. For the series to be continuous at every real number, the periodic extension
of f must be continuous as well- Which means that f(−L) = f(L).

ii. How does the previous answer change if we have 0 ≤ x ≤ L for f and use a Fourier cosine
series?
SOLUTION: We require f to be continuous in (0, L), and we need the even extension of f
to be continuous at x = 0 (which it always is if f is continuous on [0, L]), then we need
the periodic extension to be continuous on the reals- For the even extension, we always have
f(L) = f(−L). Therefore, in this case, the Fourier cosine series for f will be continuous at
every real number as long as f is continuous on [0, L].

iii. How does the first answer change if we have 0 ≤ x ≤ L for f and use a Fourier sine series?
SOLUTION: As usual, f must first be continuous on (0, L). Then the odd extension needs
to be continuous on [−L,L]. This occurs if f(0) = 0. The odd extension would then need to
be continuous as a periodic extension, which only happens if f(L) = 0 as well.

(b) Let f(x) = 3x+ 5. Compute the even and odd parts of f .

SOLUTION: The odd part is fodd = 1
2 (f(x)− f(−x)) = 3x

The even part is feven = 1
2 (f(x) + f(−x)) = 5

Side note: If we had the full Fourier series for 3x+ 5 on the interval [−L,L], then the sine series
would converge to 3x and the cosine series to 5 (in fact, the cosine series is just the number 5).

(c) Differentiation and the Fourier series:

i. Generally speaking, if f is defined on [−L,L], under what conditions can we differentiate the
general Fourier series to obtain the series for f ′(x)?
SOLUTION: We need the Fourier series to be continuous everywhere (that means f is con-
tinuous on [−L,L] and f(−L) = f(L)), and f ′ is PWS (which will guarantee the convergence
of its Fourier series). Further, note that if f ′ is not continuous at a point x0, the Fourier
series for f ′ will converge, as usual, to 1

2 (f ′(x0+) + f(x0−)

ii. Does our answer change if we use only a cosine series on [0, L]?
SOLUTION: The general part of the solution does not- That is, we need (i) the Fourier cosine
series to converge to f (so f is PWS), (ii) the series should be be continuous everywhere (so
in this case, f just needs to be continuous on [0, L]), and (iii) f ′ must be PWS so that we
know it has a series representation.

iii. Does our answer change if we use only a sine series on [0, L]?
SOLUTION: Again, the general statement does not change, just the conditions under which
the statements will be true change. That is, we need (i) the Fourier sine series to converge
to f (so f is PWS), (ii) the series should be be continuous everywhere (so in this case, f just
needs to be continuous on [0, L] AND f(0) = 0, f(L) = 0), and (iii) f ′ must be PWS so that
we know it has a series representation.

3. Let

f(x) =

{
2x for 0 < x < 1

2 for 1 < x < 2

(a) Write the even extension of f as a piecewise defined function.

The even extension of f on the interval [−2, 2] would be defined as:
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f(x) =


2 for − 2 < x < −1

−2x for − 1 < x < 0
2x for 0 < x < 1

2 for 1 < x < 2

(b) Write the odd extension of f as a piecewise defined function.

Similarly, the odd extension on [−2, 2] is defined as:

f(x) =


−2 for − 2 < x < −1
2x for − 1 < x < 0
2x for 0 < x < 1

2 for 1 < x < 2

(c) Draw a sketch of the periodic extension of f .

SOLUTION:

(d) Find the Fourier sine series (FSS) for f , and draw the FSS on the interval [−4, 4].

NOTE: The vertical lines don’t belong in the graph, and in the places where there is a jump
discontinuity (at -6, -2, 2, 6), we ought to draw a point to indicate that the series converges to
zero there.

The algebraic form of the series is:

f(x) ∼
∞∑
n=1

bn sin
(nπx

2

)
⇒ bn =

2

L

∫ L

0

f(x) sin
(nπx
L

)
dx

Therefore, with L = 2:

bn =

∫ 1

0

2x sin
(nπx

2

)
dx+

∫ 2

1

2 sin
(nπx

2

)
dx =

− 4

n2π2
(−2 sin

(nπ
2

)
+ nπ cos

(nπ
2

)
− 4

nπ
(−1 + (−1)n)

It is possible to simplify that a bit, but that is unnecessary for the exam.

(e) Find the Fourier cosine series (FCS) for f , and draw the FCS on the interval [−4, 4].

SOLUTION:

NOTE: The vertical lines don’t belong in the graph, the series would continue out in a continuous
fashion.
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The algebraic form of the series is:

f(x) ∼ a0 +

∞∑
n=1

an cos
(nπx

2

)
⇒ an =

2

L

∫ L

0

f(x) cos
(nπx
L

)
dx

The formula for a0 is slightly different, so do that one first:

a0 =
1

L

∫ L

0

f(x) dx =

∫ 1

0

2x dx+

∫ 2

1

2 dx = 3

And, for n = 1, 2, 3, . . .:

an =

∫ 1

0

2x cos
(nπx

2

)
dx+

∫ 2

1

2 cos
(nπx

2

)
dx =

4

n2π2
(−2 + 2 cos

(nπ
2

)
+ nπ sin

(nπ
2

)
− 4

nπ
sin

nπ

2

It is possible to simplify that a bit, but that is unnecessary for the exam.

4. Suppose that 0 ≤ x ≤ L, and f(x) is represented by the Fourier sine series,

f(x) ∼
∞∑
n=1

Bn sin
(nπx
L

)
Then we know that f ′(x) has a Fourier cosine series,

f ′(x) ∼ A0 +

∞∑
n=1

An cos
(nπx
L

)
(a) If we differentiate the series for f term by term, what is another cosine series for f ′(x)?

SOLUTION: Another way of expressing f ′ should be

f ′(x) ∼
∞∑
n=1

(nπ
L

)
Bn cos

(nπx
L

)
(b) Use integration by parts to show that

A0 =
1

L
(f(L)− f(0))

SOLUTION FOR A0:

A0 =
1

L

∫ L

0

f ′(x) dx ⇒ A0 =
1

L
(f(L)− f(0))

Continuing:

An =
2

L

∫ L

0

f ′(x) cos
(nπx
L

)
dx

=
2

L
((−1)nf(L)− f(0) +

nπ

L

∫ L

0

f(x) sin
(nπx
L

)
dx)

=
2

L
((−1)nf(L)− f(0)) +

nπ

L
Bn

SOLUTION: Easy to see if you build the table to do integration by parts.
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(c) Put (a), (b) together to get a formula for the series of the derivative of f ,

SOLUTION: This summarizes the formula- Given

f(x) ∼
∞∑
n=1

Bn sin
(nπx
L

)
Then the derivative has the series:

f ′(x) ∼ 1

L
(f(L)− f(0)) +

∞∑
n=1

2

L
((−1)nf(L)− f(0)) +

nπ

L
Bn cos

(nπx
L

)
5. Consider ut = kuxx subject to the conditions: ux(0, t) = 0, ux(L, t) = 0 and u(x, 0) = f(x).

Solve in the following way: Look for solutions as a Fourier cosine series, and assume that u, ux are
continuous, and uxx, ut are PWS.

SOLUTION: Let

u(x, t) = A0(t) +

∞∑
n=1

An(t) cos
(nπx
L

)
We can differentiate in time as long as u is continuous and ut is PWS:

ut = A′0(t) +

∞∑
n=1

A′n(t) cos
(nπx
L

)
We’re told that ux is continuous and uxx is PWS, so we can differentiate twice in x:

uxx = −
∞∑
n=1

n2π2

L2
An(t) cos

(nπx
L

)
Now, ut = kuxx, so we can equate coefficients of the Fourier series. First, for n = 0:

A′0(t) = 0 ⇒ A0(t) = a0

Similarly, for n = 1, 2, 3, . . .:

A′n(t) = −n
2π2

L2
An(t) ⇒ An(t) = ane−(nπ/L)

2 t

so that

u(x, t) = a0 +
∞∑
n=1

ane−(nπ/L)
2 t cos

(nπx
L

)
Finally, we require that u(x, 0) = f(x), or:

f(x) = a0 +

∞∑
n=1

an cos
(nπx
L

)
If we multiply both sides by 1, then integrate from x = 0 to x = L, we get (by orthogonality):∫ L

0

f(x) dx = a0

∫ L

0

dx+ 0 + 0 + 0 + . . . ⇒ a0 =
1

L

∫ L

0

f(x) dx

And if we multiply both sides by cos
(
kπx
L

)
and integrate, we get (again by orthogonality):∫ L

0

f(x) cos

(
kπx

L

)
dx = 0 + 0 + . . .+ ak

∫ L

0

cos2
(
kπx

L

)
dx+ 0 + 0 + . . .
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(It’s quicker just to recall that the integral on the left is L/2 than to go through the double angle
formula- That’s fine). Therefore,

ak =
2

L

∫ L

0

f(x) cos

(
kπx

L

)
dx

6. Solve the following nonhomogeneous problem:

ut = kuxx + e−t + e−2t cos

(
3πx

L

)
where we have insulated ends at x = 0 and x = L, and u(x, 0) = f(x), and we can assume that
2 6= k(3π/L)2. Use the following method: Look for the solution as a Fourier cosine series.

SOLUTION: We have the eigenvalues and eigenfunctions:

λ =
n2π2

L2
φn(x) = cos

(nπx
L

)
n = 1, 2, 3, · · ·

Therefore, we assume solutions to the non-homogeneous equation are in the form:

u(x, t) = a0(t) +

∞∑
n=1

an(t) cos
(nπx
L

)
We also note that we can write the function q(x, t) = e−t + e−2t cos

(
3πx
L

)
as a cosine series:

e−t + e−2t cos

(
3πx

L

)
= q0(t) cos(0x) + q1(t) cos

(πx
L

)
+ q2(t) cos

(
2πx

L

)
+ q3(t) cos

(
3πx

L

)
+ · · ·

Therefore, we get q0(t) = e−t, q3(t) = e−2t, and qn(t) = 0 for all other n.

Now, we substitute our series into the PDE. The prime notation is the derivative in time:

a′0(t) +

∞∑
n=1

a′n(t) cos
(nπx
L

)
= −k

∞∑
n=1

an(t)

(
n2π2

L2

)
cos
(nπx
L

)
+ e−t + e−2t cos

(
3πx

L

)
This leads to the (infinite) system of ODEs, one for each n, which we will also solve:

• n = 0:
a′0(t) = e−t ⇒ a0(t) = C − e−t

We can write the solution in terms of a0(0) as they do in the book:

a0(0) = C − 1 ⇒ C = 1 + a0(0)

Therefore,
a0(t) = 1 + a0(0)− e−t

• For n = 3, we get something similar. Use an integrating factor to solve:

a′3(t) = −9π2k

L2
a3(t) + e−2t(

a3(t)e(9π
2k/L2)t

)′
= e−2te(9π

2k/L2)t = e(−2+9π2k/L2)t

Antidifferentiating,

a3(t)e(9π
2k/L2)t =

1

(−2 + 9π2k/L2)
e(−2+9π2k/L2)t + C
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This is where we need to be sure that 2 6= 9π2k/L2 (if this was true, the right side would reduce
to 1). Simplifying, we get:

a3(t) =
1

(−2 + 9π2k/L2)
e−2t + Ce(9π

2k/L2)t

We can express this in terms of a3(0) as before:

a3(0) =
1

(−2 + 9π2k/L2)
+ C ⇒ C = a3(0)− 1

(−2 + 9π2k/L2)

Therefore,

a3(t) =
1

(−2 + 9π2k/L2)
e−2t +

(
a3(0)− 1

(−2 + 9π2k/L2)

)
e(9π

2k/L2)t

• For all other n:

a′n(t) = −n
2π2k

L2
an(t)

The solution for each of these is:

an(t) = an(0)e−(n
2π2k/L)t

7. Let f(x) be given as below.

f(x) =

{
x if − 1 < x < 0

1 + x if 0 < x < 1

(a) Find the Fourier series for f (on [−1, 1]), and draw a sketch of it on [−3, 3].

SOLUTION: I’ll leave the sketch to you. The main purpose here is to have you recall the formulas
for the series coefficients. In this case,

f(x) ∼ a0 +

∞∑
n=1

an cos(nπx) +

∞∑
n=1

bn sin(nπx)

with the formulas:

a0 =
1

2L

∫ L

−L
f(x) dx =

1

2

(∫ 0

−1
x dx+

∫ 1

0

(1 + x) dx

)
=

1

2

and,

an =
1

L

∫ L

−L
f(x) cos(nπx/L) dx =

∫ 0

−1
x cos(nπx) dx+

∫ 1

0

(1 + x) cos(nπx) dx = 0

and similarly

bn =
1

L

∫ 1

−1
f(x) sin(nπx/L) dx =

∫ 0

−1
x sin(nπx) dx+

∫ 1

0

(1 + x) sin(nπx) dx =

1

nπ
(1− (−1)n − 2(−1)n)

(NOTE: If you subtracted 1/2 from your function f(x), it becomes an odd function- That’s why
the cosine terms ended up being zero).
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(b) Find the Fourier sine series for f on [0, 1] and draw a sketch of it on [−3, 3].

SOLUTION: Again, the main point here is to have you recall the formulas and set up the integrals:

f(x) ∼
∞∑
n=1

bn sin
(nπx
L

)
with

bn =
2

L

∫ L

0

f(x) sin(nπx/L) dx = 2

∫ 1

0

(1 + x) sin(nπx) dx = 2
1− 2(−1)n

nπ

(c) Find the Fourier cosine series for f on [0, 1] and draw a sketch of it on [−3, 3].

SOLUTION: The formulas:

f(x) ∼ a0 +

∞∑
n=1

an cos
(nπx
L

)
with

a0 =
1

L

∫ L

0

f(x) dx =

∫ 1

0

(1 + x) dx =
3

2

an =
2

L

∫ L

0

f(x) cos(nπx/L) dx = 2

∫ 1

0

(1 + x) cos(nπx) dx = 2
(−1) + (−1)n

n2π2

8. Put the folowing BVP in Sturm-Liouville form:

(1− x2)φ′′ − 2xφ′ + (1 + λx)φ = 0 φ(−1) = 0 φ(1) = 0

on the interval −1 < x < 1.

TYPO: The y in the equation should have been φ (correct above).

We’ll recall that we said that, given:

φ′′ + α(x)φ′ + β(x)φ = 0

We can put this in Sturm-Liouville form by computing the integrating factor:

µ(x) = e
∫
α(x) dx

Then, multiplying both sides by it, we have:

e
∫
α(x) dx(φ′′ + α(x)φ′) =

(
e
∫
α(x) dxφ′

)′
So in this particular case, first we’ll put in our standard form:

φ′′ − 2x

1− x2
φ′ +

1 + λx

1− x2
φ = 0

The integrating factor is

µ = e
∫
−2x/(1−x2) dx = 1− x2

And therefore, the equation, in standard form, looks like:

((1− x2)φ′)′ + (1 + λx)φ = 0 ⇒ ((1− x2)φ′)′ + φ = −λxφ

I like to write the answer in eigenvalue form, but you could have left your expression without putting
λ on the right.
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9. Given the differential equation: φ′′ + λφ = 0, determine the eigenvalues λ and eigenfunctions φ if φ
satisfies the following boundary conditions (analyze all three cases; you may assume the eigenvalues
are real).

(a) φ(a) = 0, φ(b) = 0

NOTE: To solve this part, we need to use a trig identity:

sin(A−B) = sin(A) cos(B)− cos(A) sin(B)

It slipped past me as I was putting this together- You will NOT need to memorize this for the
exam (although for other things, it wouldn’t hurt).

SOLUTION: The solutions to the characteristic equation are r = ±
√
−λ.

• Case 1: λ = 0. The solution is φ(x) = C1+C2x. Using the boundary conditions, C1 = C2 = 0,
and we have the trivial solution.

• Case 2: λ < 0, or two real distinct solutions to the characteristic equation. In this case,
writing the solutions in exponential form, we have

φ(x) = C1e
√
−λx + C2e−

√
−λx

Using the boundary conditions, we have:

C1e
√
−λa + C2e−

√
−λa = 0

C1e
√
−λb + C2e−

√
−λb = 0

These lines are not the same (unless a = b), so the only solution for this set is C1 = C2 = 0,
and again we have a trivial solution.

• Finally, if λ > 0, we have our usual solution:

φ(x) = An cos
(√

λx
)

+Bn sin
(√

λx
)

With the boundary conditions, we have:

An cos
(√

λa
)

+Bn sin
(√

λa
)

= 0

An cos
(√

λb
)

+Bn sin
(√

λb
)

= 0

Therefore, we look for non-trivial solutions to this system. Using linear algebra and/or
Cramer’s rule, we know that there is a non-trivial solution if the determinant of the coefficient
matrix is zero:

cos
(√

λa
)

sin
(√

λb
)
− cos

(√
λb
)

sin
(√

λa
)

= 0

or, if sin
(√

λ(b− a)
)

= 0. Therefore, we have:

λn =

(
nπ

b− a

)2

φn(x) = sin

(
nπ

x− a
b− a

)
sin
(√

λa
)

(b) φ′(0) = 0 and φ′(L) = 0

NOTE: This one and the next are fairly standard types of problems...

SOLUTION: The solutions to the characteristic equation are r = ±
√
−λ.
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• Case 1: λ = 0. The solution is φ(x) = C1 + C2x. Using the boundary conditions, φ(x) = C1

is a possible solution.

• Case 2: λ < 0, or two real distinct solutions to the characteristic equation. In this case,
writing the solutions in exponential form, we have

φ(x) = C1e
√
−λx + C2e−

√
−λx

Using the boundary conditions, we have:

√
−λC1 −

√
−λC2 = 0

√
−λC1e

√
−λL −

√
−λC2e−

√
−λL = 0

The only solution to this system is C1 = C2 = 0, so this has only the trivial solution.

• Finally, if λ > 0, we have our usual solution:

φ(x) = An cos
(√

λx
)

+Bn sin
(√

λx
)

With the boundary conditions, we have:

φ′(0) = 0 ⇒
√
λBn = 0 ⇒ Bn = 0

φ′(L) = 0 ⇒ −
√
λAn sin

(√
λL
)

= 0 ⇒ λn =
(nπ
L

)2
and

φn(x) = cos
(nπx
L

)
(And we don’t want to forget λ0 = 1 with φ0(x) = 1)

(c) φ(0) = 0 and φ′(L) = 0

SOLUTION: With the same solution to the characteristic equation, we have:

• λ = 0: φ(x) = C1 + C2x. With the two boundary conditions, φ(x) = 0 is the only solution.

• λ < 0, and we get two distinct real solutions. Putting in the boundary conditions will yield
a system for which the only solution is C1 = C2 = 0.

• The last case: λ > 0:
φn(x) = An cos(

√
λx) +Bn sin(

√
λx)

The first condition, φ(0) = 0 makes An = 0, leaving only the sine expansion. The second
condition is satisified if:

√
λBn cos(

√
λL) = 0 ⇒

√
λL =

2n− 1

2
π

(That is, we need odd multiples of π/2 for the cosine). Therefore, we now have

λn =

(
(2n− 1)π

2L

)2

φn(x) = sin

(
(2n− 1)π

2L
x

)
10. Solve

utt =
4

r

∂

∂r

(
r
∂u

∂r

)
0 < r < 1, t > 0

with u(r, 0) = f(r), u(0, t) bounded and u(1, t) = 0. You should assume that the (radial) eigenfunctions
are known and complete.
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NOTE: We can leave 4 with φ or with T - In the solution below, we group it with T , but that isn’t the
only way to solve this.

SOLUTION: Using separation of variables with u = φ(r)T (t), we have:

φ(r)T ′′(t) =
4

r
(rφ(r)T (t))r ⇒ T ′′

4T
=

1

φr
(rφ′(r))r = −λ

Therefore, dividing everything by 4φT , we have:

(rφ′(r))′ = −λrφ T ′′ = −4λT

The radial equation is in S-L form with p(r) = r, q = 0 and σ(r) = r. To solve the time equation, it is
good to first see if we have any negative eigenvalues by checking the Rayleigh quotient:

λ1 = R(φ1) =
−rφφ′|10 +

∫ 1

0
r(φ′)2 dr∫ 1

0
φ2r dr

From the boundary conditions, we know φ(1) = 0 and |φ(r)| is bounded at r = 0. The Rayleigh
quotient then simplifies to:

λ1 =

∫ 1

0
r(φ′)2 dr∫ 1

0
φ2r dr

For λ1 = 0, we would require φ′ = 0, or φ(x) = C. But φ(1) = 0 would make this the trivial solution.
Therefore, λ1 > 0.

Now proceeding to the time equation with λ > 0:

T (t) = An cos(
√
λt) +Bn sin(

√
λt)

and the general solution is:

u(r, t) =

∞∑
n=1

φn(r)(An cos(
√
λnt) +Bn sin(

√
λnt))

with

u(r, 0) = f(r) =

∞∑
n=1

Anφn(r) ⇒ An =

∫ 1

0
f(r)φn(r)r dr∫ 1

0
φ2n(r)r dr

(Remember to multiply by r, which is required for orthogonality to hold).

11. Given the BVP in regular S-L form, with appropriate boundary conditions, show that the eigenfunctions
corresponding to two distinct eigenvalues are orthogonal with respect to σ(x). Hint: Consider∫ b

a

φnL(φm)− φmL(φn) dx

SOLUTION: Recall that for L to be the S-L operator, we have:

L(φ) = −λσ(x)φ

Therefore, ∫ b

a

φnL(φm)− φmL(φn) dx =

∫ b

a

−λmφnφmσ(x) + λnφmφnσ(x) dx

11



= (λn − λm)

∫ b

a

φnφmσ(x) dx

We also know (proof using Green’s formula) that if u, v satisfy the (regular) boundary conditions, then∫ b

a

uL(v)− vL(u) dx = 0

And our φn, φm do indeed satisfy the BCs. Therefore, we conclude that

(λn − λm)

∫ b

a

φnφmσ(x) dx = 0

Since λn 6= λm, the integral must be zero (for any n 6= m).

12. Solve using separation of variables:

PDE utt = uxx 0 < x < 1, t > 0
BCs u(0, t) = 0 u(1, t) = 0
ICs u(x, 0) = sin(πx) + 1

2 sin(3πx) + 3 sin(7πx)
ut(x, 0) = sin(2πx)

(Keep the constants with the spatial equation)

NOTE: In this case, there weren’t any constants to keep with the spatial equation- That was a copy-paste
error, so ignore it.

SOLUTION: We recognize that we’ll get the standard equations for space and time, with the usual
boundary conditions for the sine expansion. That is:

T ′′ = −λT φ′′ = −λφ

with
λn = (nπ)

2
φn(x) = sin(nπx)

We won’t have any zero eigenvalues, so we can also solve the temporal equation right away:

Tn(t) = An cos(nπt) +Bn sin(nπt)

so the overall solution is:

u(x, t) =

∞∑
n=1

sin(nπx)(An cos(nπt) +Bn sin(nπt))

Now,

u(x, 0) =

∞∑
n=1

An sin(nπx) = sin(πx) +
1

2
sin(3πx) + 3 sin(7πx)

Therefore, A1 = 1, A3 = 1/2, A7 = 3 and all other An are zero. Using the other initial condition,

ut(x, 0) =

∞∑
n=1

nπBn sin(nπx) = sin(2πx)

Therefore, all Bn = 0 except for B2. In this case, B2 = frac12π.

Putting all the pieces together, the solution is:

u(x, t) = cos(πt) sin(πx) +
1

2
cos(3πt) sin(3πx) + 3 cos(7πt) sin(7πx) +

1

2π
sin(2πt) sin(2πx)
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13. Consider L(φ) = φ′′′′. Find an expression like Green’s Formula for this operator on 0 < x < 1. HINT:

Use integration by parts for
∫ 1

0
uL(v) dx until you get

∫ 1

0
vL(u) dx on the right side of the equation.

That is, you should have something in the form:∫ 1

0

uL(v) dx = (...) +

∫ 1

0

vL(u) dx

SOLUTION: Using integration by parts with a table, we have the following:

∫ 1

0

uL(v) dx ⇒

+ u v′′′′

− u′ v′′′

+ u′′ v′′

− u′′′ v′

+ u′′′′ v

Putting this together,∫ 1

0

uL(v) dx = (uv′′′ − u′v′′ + u′′v′ − u′′′v)|10 +

∫ 1

0

vu′′′′ dx

Therefore, ∫ 1

0

uL(v)− vL(u) dx = (uv′′′ − u′v′′ + u′′v′ − u′′′v)|10

14. Consider

ρutt = T0uxx + αu

u(0, t) = u(L, t) = 0

u(x, 0) = f(x)

ut(x, 0) = g(x)

with ρ(x) > 0, α(x) < 0, and T0 constant.

Assume that the appropriate eigenfunctions (in space) are known. Solve the PDE using separation of
variables.

SOLUTION: See 5.4.5, included below.

Separation of variables will lead to our usual two ODEs, one in time, one in space:

(time) h′′ + λh = 0

(space) φ′′ +
α

T0
φ+ λ

ρ

T0
φ = 0

The spatial equation is a regular Sturm-Liouville problem with p(x) = T0 (constant), q(x) = α < 0
and σ(x) = ρ(x) > 0. The Rayleigh quotient then becomes:

λ =
0 +

∫ L
0
T0(φ′)2 − αφ2 dx∫ L
0
φ2 ρ dx

Since α < 0, this quotient is greater than zero (zero only when φ = 0). Therefore, we know λn > 0.
Therefore, the solutions to the time equation are:

hn(t) = cn cos(
√
λnt) + dn sin(

√
λnt)

13



Using the superposition, we have

u(x, t) =

∞∑
n=1

φn(x)[an cos(
√
λnt) + bn sin(

√
λnt)]

u(0, t) =

∞∑
n=1

anφn(x) = f(x)

an =
(f, σφn)

(φn, σφn)

where σ = ρ/T0, and (f, g) is the inner product

(f, g) =

∫ L

0

f(x)g(x) dx

Also, for initial velocity

ut(x, t) =

∞∑
n=1

φn(x)[−an
√
λn sin(

√
λnt) + bn

√
λn cos(

√
λnt)]

ut(0, t) =

∞∑
n=1

bn
√
λnφn(x) = g(x)

bn =
1√
λn

(g, σφn)

(φn, σφn)

15. Use the Rayleigh quotient to obtain a reasonably accurate upper bound for the lowest eigenvalue of

φ′′ + (λ− x)φ = 0 φ′(0) = 0 φ′(1) + 2φ(1) = 0

SOLUTION: Find the simplest (nonzero!) function that satisfies the boundary conditions. A constant
or a line will be trivial, so the next best thing is a polynomial of degree 2:

u(x) = ax2 + bx+ c u′(0) = 0 ⇒ b = 0

Now, with φ′(1) + 2φ(1) = 0, we have: (2a) + 2(a + c) = 0 or 4a + 2b = 0, or b = −2a. For example,
we can try

u = x2 − 2

Now, with p(x) = 1, σ(x) = 1, and q(x) = −x, the Rayleigh quotient is:

λ ≤
0 +

∫ 1

0
(2x)2 + x(x2 − 2)2 dx∫ 1

0
(x2 − 2)2 dx

≈ 0.87

16. Use the alternate form of the Rayleigh quotient below to compute R(u), if λn are the eigenvalues,
φn the eigenfunctions, and u = 2φ1 + 3φ2. To simplify our computations, you may assume that the

eigenfunctions have been normalized so that
∫ b
a
φ2nσ(x) dx = 1. In that case, the Rayleigh quotient

simplifies to:

R(φ) = −
∫ b

a

φL(φ) dx

NOTE: This exercise is to familiarize you with the technique we used in proving the minimization
principle...
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SOLUTION:
u = 2φ1 + 3φ2 ⇒ L(u) = −2λ1σ(x)φ1 − 3λ2σ(x)φ2

so that when we multiply uL(u), we will have mixed terms φiφj , so we integrate to make them zero,
and we’re left with:

−
∫ b

a

uL(u) du = 22λ21

∫ b

a

φ21σ(x) dx+ 32λ22

∫ b

a

φ22σ(x) dx = 4λ21 + 9λ22

Similarly, ∫ b

a

u2σ(x) dx = 22
∫ b

a

φ21σ(x) dx+ 32
∫ b

a

φ22σ(x) dx = 22 + 32 = 13

Therefore,

R(u) =
4

13
λ1 +

9

13
λ2

17. Suppose we define a linear operator as: L(y) = y′, where y satisfies the BCs y(0)− 3y(1) = 0. Find an
expression for the adjoint operator L∗ so that

〈u, L(v)〉 = 〈L∗(u), v〉

You may assume that 〈f, g〉 =
∫ 1

0
f(t)g(t) dt. You should also determine the BCs for functions used by

L∗.

SOLUTION: We write out 〈u, L(v)〉, then we do something so that v factors out, leaving an expression
in u (typically this means integration by parts):∫ 1

0

uv′ dx ⇒ + u v′

− u′ v
⇒ uv|10 −

∫ 1

0

vu′ dx

Work with the constant term, and note that u satisfies the BCs given in the problem (but v may not):

u(1)v(1)− u(0)v(0) = u(1)v(1)− 3u(1)v(0) = u(1)(v(1)− 3v(0))

Therefore, we can say that L∗(v) = −v′ and the BC is v(1) − 3v(0) = 0 (which has an interesting
relationship to the original BC). As a side remark, we note that L 6= L∗ (and the domains are also
different), so differentiation is not self-adjoint (but the second derivative is).
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