Review SOLUTIONS: Exam 2

1. True or False? (And give a short answer)
(a) If $f(x)$ is piecewise smooth on $[0, L]$, we can find a series representation using either a sine or a cosine series.
SOLUTION: TRUE. If we use a sine series, the series will converge to the odd extension of f on $[-L, L]$, then to the periodic extension of that over the reals (with the usual caveat about points at which the periodic extension has a jump discontinuity).
If we use a cosine series (with the constant term), the series will converge to the even extension of f on $[-L, L]$, then to the periodic extension of that over the reals (again with the caveat about the jump discontinuities).
(b) If $f(x)$ is piecewise smooth on $[-L, L]$, we can find a series representation using either a sine or a cosine series.
SOLUTION: FALSE. On the full interval $[-L, L]$ we need both sines and cosines to get a complete set of functions (that is, both sines and cosines are needed to make a basis for this vector space). In other words, we must assume the form:

$$
f(x) \sim a_{0}+\sum_{n=1}^{\infty} a_{n} \cos \left(\frac{n \pi x}{L}\right)+\sum_{n=1}^{\infty} b_{n} \sin \left(\frac{n \pi x}{L}\right)
$$

(Note that we're assume on these problems that the arguments for the sine and cosine have $n \pi x / L$ in them... Without that assumption, the statement could be true).
(c) The sine series for $f(x)$ on $[-L, L]$ will converge to the odd extension of f.

SOLUTION: FALSE. The sine series for $f(x)$ will converge to the odd part of f, which is given by:

$$
f_{\text {odd }}=\frac{1}{2}(f(x)-f(-x))
$$

If f itself was odd, the statement would be true (but TRUE would mean the statement is true for all f). A similar argument can be made about cosines and the even part of f.
The key point of this question is to be sure you know the difference between the even/odd part of f and the even/odd extension of f.
(d) The Gibbs phenomenon (an overshoot of the Fourier series) occurs only when we use a finite number of terms in the Fourier series to represent a function that is discontinuous.
SOLUTION: TRUE. If we use an infinite number of terms, there is no "overshoot", and the series converges to $f(x)$ where f is continuous, and $\frac{1}{2}(f(x+)+f(x-))$ where f is discontinuous. Therefore, the only time that you can get this overshooting phenomenon is when you use a finite number of terms in the sum.
(e) The functions $\sin (n x)$ for $n=1,2,3, \cdots$ are orthogonal to the functions $\cos (m x)$ for $m=$ $0,1,2,3, \cdots$ on the interval $[0, \pi]$.
SOLUTION: FALSE. For example, consider the following integral of the product of $\sin (x)$ with 1 (or $\cos (0 x)$):

$$
\int_{0}^{\pi} \sin (x) \cdot 1 d x=\left.\cos (x)\right|_{1} ^{\pi}=2
$$

Similarly, (you wouldn't need to compute this without a table):

$$
\int_{0}^{\pi} \sin (x) \cos (2 x) d x=-\frac{2}{3}
$$

We should note, however, that if the interval is changed to $[-\pi, \pi]$, then the statement would have been TRUE.
2. Short Answer:
(a) Questions about when the Fourier series will be continuous:
i. Let $-L \leq x \leq L$. For what functions f can we guarantee that the Fourier series of f will be continuous (at every real number)?
SOLUTION: For the Fourier series to be continuous in the interior of $(-L, L)$, the function f must be as well. For the series to be continuous at every real number, the periodic extension of f must be continuous as well- Which means that $f(-L)=f(L)$.
ii. How does the previous answer change if we have $0 \leq x \leq L$ for f and use a Fourier cosine series?
SOLUTION: We require f to be continuous in $(0, L)$, and we need the even extension of f to be continuous at $x=0$ (which it always is if f is continuous on $[0, L]$), then we need the periodic extension to be continuous on the reals- For the even extension, we always have $f(L)=f(-L)$. Therefore, in this case, the Fourier cosine series for f will be continuous at every real number as long as f is continuous on $[0, L]$.
iii. How does the first answer change if we have $0 \leq x \leq L$ for f and use a Fourier sine series? SOLUTION: As usual, f must first be continuous on $(0, L)$. Then the odd extension needs to be continuous on $[-L, L]$. This occurs if $f(0)=0$. The odd extension would then need to be continuous as a periodic extension, which only happens if $f(L)=0$ as well.
(b) Let $f(x)=3 x+5$. Compute the even and odd parts of f.

SOLUTION: The odd part is $f_{\text {odd }}=\frac{1}{2}(f(x)-f(-x))=3 x$
The even part is $f_{\text {even }}=\frac{1}{2}(f(x)+f(-x))=5$
Side note: If we had the full Fourier series for $3 x+5$ on the interval $[-L, L]$, then the sine series would converge to $3 x$ and the cosine series to 5 (in fact, the cosine series is just the number 5).
(c) Differentiation and the Fourier series:
i. Generally speaking, if f is defined on $[-L, L]$, under what conditions can we differentiate the general Fourier series to obtain the series for $f^{\prime}(x)$?
SOLUTION: We need the Fourier series to be continuous everywhere (that means f is continuous on $[-L, L]$ and $f(-L)=f(L)$), and f^{\prime} is PWS (which will guarantee the convergence of its Fourier series). Further, note that if f^{\prime} is not continuous at a point x_{0}, the Fourier series for f^{\prime} will converge, as usual, to $\frac{1}{2}\left(f^{\prime}\left(x_{0}+\right)+f\left(x_{0}-\right)\right.$
ii. Does our answer change if we use only a cosine series on $[0, L]$?

SOLUTION: The general part of the solution does not- That is, we need (i) the Fourier cosine series to converge to f (so f is PWS), (ii) the series should be be continuous everywhere (so in this case, f just needs to be continuous on $[0, L]$), and (iii) f^{\prime} must be PWS so that we know it has a series representation.
iii. Does our answer change if we use only a sine series on $[0, L]$?

SOLUTION: Again, the general statement does not change, just the conditions under which the statements will be true change. That is, we need (i) the Fourier sine series to converge to f (so f is PWS), (ii) the series should be be continuous everywhere (so in this case, f just needs to be continuous on $[0, L]$ AND $f(0)=0, f(L)=0$), and (iii) f^{\prime} must be PWS so that we know it has a series representation.
3. Let

$$
f(x)=\left\{\begin{aligned}
2 x & \text { for } 0<x<1 \\
2 & \text { for } 1<x<2
\end{aligned}\right.
$$

(a) Write the even extension of f as a piecewise defined function.

The even extension of f on the interval $[-2,2]$ would be defined as:

$$
f(x)=\left\{\begin{aligned}
2 & \text { for }-2<x<-1 \\
-2 x & \text { for }-1<x<0 \\
2 x & \text { for } 0<x<1 \\
2 & \text { for } 1<x<2
\end{aligned}\right.
$$

(b) Write the odd extension of f as a piecewise defined function.

Similarly, the odd extension on $[-2,2]$ is defined as:
$f(x)=\left\{\begin{aligned}-2 & \text { for }-2<x<-1 \\ 2 x & \text { for }-1<x<0 \\ 2 x & \text { for } 0<x<1 \\ 2 & \text { for } 1<x<2\end{aligned}\right.$

(c) Draw a sketch of the periodic extension of f.

SOLUTION:

(d) Find the Fourier sine series (FSS) for f, and draw the $F S S$ on the interval $[-4,4]$.

NOTE: The vertical lines don't belong in the graph, and in the places where there is a jump discontinuity (at $-6,-2,2,6$), we ought to draw a point to indicate that the series converges to zero there.
The algebraic form of the series is:

$$
f(x) \sim \sum_{n=1}^{\infty} b_{n} \sin \left(\frac{n \pi x}{2}\right) \Rightarrow b_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x
$$

Therefore, with $L=2$:

$$
\begin{gathered}
b_{n}=\int_{0}^{1} 2 x \sin \left(\frac{n \pi x}{2}\right) d x+\int_{1}^{2} 2 \sin \left(\frac{n \pi x}{2}\right) d x= \\
-\frac{4}{n^{2} \pi^{2}}\left(-2 \sin \left(\frac{n \pi}{2}\right)+n \pi \cos \left(\frac{n \pi}{2}\right)-\frac{4}{n \pi}\left(-1+(-1)^{n}\right)\right.
\end{gathered}
$$

It is possible to simplify that a bit, but that is unnecessary for the exam.
(e) Find the Fourier cosine series (FCS) for f, and draw the $F C S$ on the interval $[-4,4]$.

SOLUTION:

NOTE: The vertical lines don't belong in the graph, the series would continue out in a continuous fashion.

The algebraic form of the series is:

$$
f(x) \sim a_{0}+\sum_{n=1}^{\infty} a_{n} \cos \left(\frac{n \pi x}{2}\right) \Rightarrow a_{n}=\frac{2}{L} \int_{0}^{L} f(x) \cos \left(\frac{n \pi x}{L}\right) d x
$$

The formula for a_{0} is slightly different, so do that one first:

$$
a_{0}=\frac{1}{L} \int_{0}^{L} f(x) d x=\int_{0}^{1} 2 x d x+\int_{1}^{2} 2 d x=3
$$

And, for $n=1,2,3, \ldots$:

$$
\begin{aligned}
& a_{n}=\int_{0}^{1} 2 x \cos \left(\frac{n \pi x}{2}\right) d x+\int_{1}^{2} 2 \cos \left(\frac{n \pi x}{2}\right) d x= \\
& \frac{4}{n^{2} \pi^{2}}\left(-2+2 \cos \left(\frac{n \pi}{2}\right)+n \pi \sin \left(\frac{n \pi}{2}\right)-\frac{4}{n \pi} \sin \frac{n \pi}{2}\right.
\end{aligned}
$$

It is possible to simplify that a bit, but that is unnecessary for the exam.
4. Suppose that $0 \leq x \leq L$, and $f(x)$ is represented by the Fourier sine series,

$$
f(x) \sim \sum_{n=1}^{\infty} B_{n} \sin \left(\frac{n \pi x}{L}\right)
$$

Then we know that $f^{\prime}(x)$ has a Fourier cosine series,

$$
f^{\prime}(x) \sim A_{0}+\sum_{n=1}^{\infty} A_{n} \cos \left(\frac{n \pi x}{L}\right)
$$

(a) If we differentiate the series for f term by term, what is another cosine series for $f^{\prime}(x)$? SOLUTION: Another way of expressing f^{\prime} should be

$$
f^{\prime}(x) \sim \sum_{n=1}^{\infty}\left(\frac{n \pi}{L}\right) B_{n} \cos \left(\frac{n \pi x}{L}\right)
$$

(b) Use integration by parts to show that

$$
A_{0}=\frac{1}{L}(f(L)-f(0))
$$

SOLUTION FOR A_{0} :

$$
A_{0}=\frac{1}{L} \int_{0}^{L} f^{\prime}(x) d x \quad \Rightarrow \quad A_{0}=\frac{1}{L}(f(L)-f(0))
$$

Continuing:

$$
\begin{gathered}
A_{n}=\frac{2}{L} \int_{0}^{L} f^{\prime}(x) \cos \left(\frac{n \pi x}{L}\right) d x \\
=\frac{2}{L}\left((-1)^{n} f(L)-f(0)+\frac{n \pi}{L} \int_{0}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x\right) \\
=\frac{2}{L}\left((-1)^{n} f(L)-f(0)\right)+\frac{n \pi}{L} B_{n}
\end{gathered}
$$

SOLUTION: Easy to see if you build the table to do integration by parts.
(c) Put (a), (b) together to get a formula for the series of the derivative of f, SOLUTION: This summarizes the formula- Given

$$
f(x) \sim \sum_{n=1}^{\infty} B_{n} \sin \left(\frac{n \pi x}{L}\right)
$$

Then the derivative has the series:

$$
f^{\prime}(x) \sim \frac{1}{L}(f(L)-f(0))+\sum_{n=1}^{\infty} \frac{2}{L}\left((-1)^{n} f(L)-f(0)\right)+\frac{n \pi}{L} B_{n} \cos \left(\frac{n \pi x}{L}\right)
$$

5. Consider $u_{t}=k u_{x x}$ subject to the conditions: $u_{x}(0, t)=0, u_{x}(L, t)=0$ and $u(x, 0)=f(x)$.

Solve in the following way: Look for solutions as a Fourier cosine series, and assume that u, u_{x} are continuous, and $u_{x x}, u_{t}$ are PWS.
SOLUTION: Let

$$
u(x, t)=A_{0}(t)+\sum_{n=1}^{\infty} A_{n}(t) \cos \left(\frac{n \pi x}{L}\right)
$$

We can differentiate in time as long as u is continuous and u_{t} is PWS:

$$
u_{t}=A_{0}^{\prime}(t)+\sum_{n=1}^{\infty} A_{n}^{\prime}(t) \cos \left(\frac{n \pi x}{L}\right)
$$

We're told that u_{x} is continuous and $u_{x x}$ is PWS, so we can differentiate twice in x :

$$
u_{x x}=-\sum_{n=1}^{\infty} \frac{n^{2} \pi^{2}}{L^{2}} A_{n}(t) \cos \left(\frac{n \pi x}{L}\right)
$$

Now, $u_{t}=k u_{x x}$, so we can equate coefficients of the Fourier series. First, for $n=0$:

$$
A_{0}^{\prime}(t)=0 \quad \Rightarrow \quad A_{0}(t)=a_{0}
$$

Similarly, for $n=1,2,3, \ldots$:

$$
A_{n}^{\prime}(t)=-\frac{n^{2} \pi^{2}}{L^{2}} A_{n}(t) \quad \Rightarrow \quad A_{n}(t)=a_{n} \mathrm{e}^{-(n \pi / L)^{2} t}
$$

so that

$$
u(x, t)=a_{0}+\sum_{n=1}^{\infty} a_{n} \mathrm{e}^{-(n \pi / L)^{2} t} \cos \left(\frac{n \pi x}{L}\right)
$$

Finally, we require that $u(x, 0)=f(x)$, or:

$$
f(x)=a_{0}+\sum_{n=1}^{\infty} a_{n} \cos \left(\frac{n \pi x}{L}\right)
$$

If we multiply both sides by 1 , then integrate from $x=0$ to $x=L$, we get (by orthogonality):

$$
\int_{0}^{L} f(x) d x=a_{0} \int_{0}^{L} d x+0+0+0+\ldots \quad \Rightarrow \quad a_{0}=\frac{1}{L} \int_{0}^{L} f(x) d x
$$

And if we multiply both sides by $\cos \left(\frac{k \pi x}{L}\right)$ and integrate, we get (again by orthogonality):

$$
\int_{0}^{L} f(x) \cos \left(\frac{k \pi x}{L}\right) d x=0+0+\ldots+a_{k} \int_{0}^{L} \cos ^{2}\left(\frac{k \pi x}{L}\right) d x+0+0+\ldots
$$

(It's quicker just to recall that the integral on the left is $L / 2$ than to go through the double angle formula- That's fine). Therefore,

$$
a_{k}=\frac{2}{L} \int_{0}^{L} f(x) \cos \left(\frac{k \pi x}{L}\right) d x
$$

6. Solve the following nonhomogeneous problem:

$$
u_{t}=k u_{x x}+\mathrm{e}^{-t}+\mathrm{e}^{-2 t} \cos \left(\frac{3 \pi x}{L}\right)
$$

where we have insulated ends at $x=0$ and $x=L$, and $u(x, 0)=f(x)$, and we can assume that $2 \neq k(3 \pi / L)^{2}$. Use the following method: Look for the solution as a Fourier cosine series.
SOLUTION: We have the eigenvalues and eigenfunctions:

$$
\lambda=\frac{n^{2} \pi^{2}}{L^{2}} \quad \phi_{n}(x)=\cos \left(\frac{n \pi x}{L}\right) \quad n=1,2,3, \cdots
$$

Therefore, we assume solutions to the non-homogeneous equation are in the form:

$$
u(x, t)=a_{0}(t)+\sum_{n=1}^{\infty} a_{n}(t) \cos \left(\frac{n \pi x}{L}\right)
$$

We also note that we can write the function $q(x, t)=\mathrm{e}^{-t}+\mathrm{e}^{-2 t} \cos \left(\frac{3 \pi x}{L}\right)$ as a cosine series:

$$
\mathrm{e}^{-t}+\mathrm{e}^{-2 t} \cos \left(\frac{3 \pi x}{L}\right)=q_{0}(t) \cos (0 x)+q_{1}(t) \cos \left(\frac{\pi x}{L}\right)+q_{2}(t) \cos \left(\frac{2 \pi x}{L}\right)+q_{3}(t) \cos \left(\frac{3 \pi x}{L}\right)+\cdots
$$

Therefore, we get $q_{0}(t)=\mathrm{e}^{-t}, q_{3}(t)=\mathrm{e}^{-2 t}$, and $q_{n}(t)=0$ for all other n.
Now, we substitute our series into the PDE. The prime notation is the derivative in time:

$$
a_{0}^{\prime}(t)+\sum_{n=1}^{\infty} a_{n}^{\prime}(t) \cos \left(\frac{n \pi x}{L}\right)=-k \sum_{n=1}^{\infty} a_{n}(t)\left(\frac{n^{2} \pi^{2}}{L^{2}}\right) \cos \left(\frac{n \pi x}{L}\right)+\mathrm{e}^{-t}+\mathrm{e}^{-2 t} \cos \left(\frac{3 \pi x}{L}\right)
$$

This leads to the (infinite) system of ODEs, one for each n, which we will also solve:

- $n=0$:

$$
a_{0}^{\prime}(t)=\mathrm{e}^{-t} \quad \Rightarrow \quad a_{0}(t)=C-\mathrm{e}^{-t}
$$

We can write the solution in terms of $a_{0}(0)$ as they do in the book:

$$
a_{0}(0)=C-1 \quad \Rightarrow \quad C=1+a_{0}(0)
$$

Therefore,

$$
a_{0}(t)=1+a_{0}(0)-\mathrm{e}^{-t}
$$

- For $n=3$, we get something similar. Use an integrating factor to solve:

$$
\begin{gathered}
a_{3}^{\prime}(t)=-\frac{9 \pi^{2} k}{L^{2}} a_{3}(t)+\mathrm{e}^{-2 t} \\
\left(a_{3}(t) \mathrm{e}^{\left(9 \pi^{2} k / L^{2}\right) t}\right)^{\prime}=\mathrm{e}^{-2 t} \mathrm{e}^{\left(9 \pi^{2} k / L^{2}\right) t}=\mathrm{e}^{\left(-2+9 \pi^{2} k / L^{2}\right) t}
\end{gathered}
$$

Antidifferentiating,

$$
a_{3}(t) \mathrm{e}^{\left(9 \pi^{2} k / L^{2}\right) t}=\frac{1}{\left(-2+9 \pi^{2} k / L^{2}\right)} \mathrm{e}^{\left(-2+9 \pi^{2} k / L^{2}\right) t}+C
$$

This is where we need to be sure that $2 \neq 9 \pi^{2} k / L^{2}$ (if this was true, the right side would reduce to 1). Simplifying, we get:

$$
a_{3}(t)=\frac{1}{\left(-2+9 \pi^{2} k / L^{2}\right)} \mathrm{e}^{-2 t}+C \mathrm{e}^{\left(9 \pi^{2} k / L^{2}\right) t}
$$

We can express this in terms of $a_{3}(0)$ as before:

$$
a_{3}(0)=\frac{1}{\left(-2+9 \pi^{2} k / L^{2}\right)}+C \quad \Rightarrow \quad C=a_{3}(0)-\frac{1}{\left(-2+9 \pi^{2} k / L^{2}\right)}
$$

Therefore,

$$
a_{3}(t)=\frac{1}{\left(-2+9 \pi^{2} k / L^{2}\right)} \mathrm{e}^{-2 t}+\left(a_{3}(0)-\frac{1}{\left(-2+9 \pi^{2} k / L^{2}\right)}\right) \mathrm{e}^{\left(9 \pi^{2} k / L^{2}\right) t}
$$

- For all other n :

$$
a_{n}^{\prime}(t)=-\frac{n^{2} \pi^{2} k}{L^{2}} a_{n}(t)
$$

The solution for each of these is:

$$
a_{n}(t)=a_{n}(0) \mathrm{e}^{-\left(n^{2} \pi^{2} k / L\right) t}
$$

7. Let $f(x)$ be given as below.

$$
f(x)=\left\{\begin{array}{r}
x \text { if }-1<x<0 \\
1+x \text { if } 0<x<1
\end{array}\right.
$$

(a) Find the Fourier series for f (on $[-1,1]$), and draw a sketch of it on $[-3,3]$.

SOLUTION: I'll leave the sketch to you. The main purpose here is to have you recall the formulas for the series coefficients. In this case,

$$
f(x) \sim a_{0}+\sum_{n=1}^{\infty} a_{n} \cos (n \pi x)+\sum_{n=1}^{\infty} b_{n} \sin (n \pi x)
$$

with the formulas:

$$
a_{0}=\frac{1}{2 L} \int_{-L}^{L} f(x) d x=\frac{1}{2}\left(\int_{-1}^{0} x d x+\int_{0}^{1}(1+x) d x\right)=\frac{1}{2}
$$

and,

$$
a_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \cos (n \pi x / L) d x=\int_{-1}^{0} x \cos (n \pi x) d x+\int_{0}^{1}(1+x) \cos (n \pi x) d x=0
$$

and similarly

$$
\begin{gathered}
b_{n}=\frac{1}{L} \int_{-1}^{1} f(x) \sin (n \pi x / L) d x=\int_{-1}^{0} x \sin (n \pi x) d x+\int_{0}^{1}(1+x) \sin (n \pi x) d x= \\
\frac{1}{n \pi}\left(1-(-1)^{n}-2(-1)^{n}\right)
\end{gathered}
$$

(NOTE: If you subtracted $1 / 2$ from your function $f(x)$, it becomes an odd function- That's why the cosine terms ended up being zero).
(b) Find the Fourier sine series for f on $[0,1]$ and draw a sketch of it on $[-3,3]$.

SOLUTION: Again, the main point here is to have you recall the formulas and set up the integrals:

$$
f(x) \sim \sum_{n=1}^{\infty} b_{n} \sin \left(\frac{n \pi x}{L}\right)
$$

with

$$
b_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin (n \pi x / L) d x=2 \int_{0}^{1}(1+x) \sin (n \pi x) d x=2 \frac{1-2(-1)^{n}}{n \pi}
$$

(c) Find the Fourier cosine series for f on $[0,1]$ and draw a sketch of it on $[-3,3]$.

SOLUTION: The formulas:

$$
f(x) \sim a_{0}+\sum_{n=1}^{\infty} a_{n} \cos \left(\frac{n \pi x}{L}\right)
$$

with

$$
\begin{gathered}
a_{0}=\frac{1}{L} \int_{0}^{L} f(x) d x=\int_{0}^{1}(1+x) d x=\frac{3}{2} \\
a_{n}=\frac{2}{L} \int_{0}^{L} f(x) \cos (n \pi x / L) d x=2 \int_{0}^{1}(1+x) \cos (n \pi x) d x=2 \frac{(-1)+(-1)^{n}}{n^{2} \pi^{2}}
\end{gathered}
$$

8. Put the folowing BVP in Sturm-Liouville form:

$$
\left(1-x^{2}\right) \phi^{\prime \prime}-2 x \phi^{\prime}+(1+\lambda x) \phi=0 \quad \phi(-1)=0 \quad \phi(1)=0
$$

on the interval $-1<x<1$.
TYPO: The y in the equation should have been ϕ (correct above).
We'll recall that we said that, given:

$$
\phi^{\prime \prime}+\alpha(x) \phi^{\prime}+\beta(x) \phi=0
$$

We can put this in Sturm-Liouville form by computing the integrating factor:

$$
\mu(x)=\mathrm{e}^{\int \alpha(x) d x}
$$

Then, multiplying both sides by it, we have:

$$
\mathrm{e}^{\int \alpha(x) d x}\left(\phi^{\prime \prime}+\alpha(x) \phi^{\prime}\right)=\left(\mathrm{e}^{\int \alpha(x) d x} \phi^{\prime}\right)^{\prime}
$$

So in this particular case, first we'll put in our standard form:

$$
\phi^{\prime \prime}-\frac{2 x}{1-x^{2}} \phi^{\prime}+\frac{1+\lambda x}{1-x^{2}} \phi=0
$$

The integrating factor is

$$
\mu=\mathrm{e}^{\int-2 x /\left(1-x^{2}\right) d x}=1-x^{2}
$$

And therefore, the equation, in standard form, looks like:

$$
\left(\left(1-x^{2}\right) \phi^{\prime}\right)^{\prime}+(1+\lambda x) \phi=0 \quad \Rightarrow \quad\left(\left(1-x^{2}\right) \phi^{\prime}\right)^{\prime}+\phi=-\lambda x \phi
$$

I like to write the answer in eigenvalue form, but you could have left your expression without putting λ on the right.
9. Given the differential equation: $\phi^{\prime \prime}+\lambda \phi=0$, determine the eigenvalues λ and eigenfunctions ϕ if ϕ satisfies the following boundary conditions (analyze all three cases; you may assume the eigenvalues are real).
(a) $\phi(a)=0, \phi(b)=0$

NOTE: To solve this part, we need to use a trig identity:

$$
\sin (A-B)=\sin (A) \cos (B)-\cos (A) \sin (B)
$$

It slipped past me as I was putting this together- You will NOT need to memorize this for the exam (although for other things, it wouldn't hurt).

SOLUTION: The solutions to the characteristic equation are $r= \pm \sqrt{-\lambda}$.

- Case 1: $\lambda=0$. The solution is $\phi(x)=C_{1}+C_{2} x$. Using the boundary conditions, $C_{1}=C_{2}=0$, and we have the trivial solution.
- Case 2: $\lambda<0$, or two real distinct solutions to the characteristic equation. In this case, writing the solutions in exponential form, we have

$$
\phi(x)=C_{1} \mathrm{e}^{\sqrt{-\lambda} x}+C_{2} \mathrm{e}^{-\sqrt{-\lambda} x}
$$

Using the boundary conditions, we have:

$$
\begin{aligned}
C_{1} \mathrm{e}^{\sqrt{-\lambda} a}+C_{2} \mathrm{e}^{-\sqrt{-\lambda} a} & =0 \\
C_{1} \mathrm{e}^{\sqrt{-\lambda} b}+C_{2} \mathrm{e}^{-\sqrt{-\lambda} b} & =0
\end{aligned}
$$

These lines are not the same (unless $a=b$), so the only solution for this set is $C_{1}=C_{2}=0$, and again we have a trivial solution.

- Finally, if $\lambda>0$, we have our usual solution:

$$
\phi(x)=A_{n} \cos (\sqrt{\lambda} x)+B_{n} \sin (\sqrt{\lambda} x)
$$

With the boundary conditions, we have:

$$
\begin{aligned}
& A_{n} \cos (\sqrt{\lambda} a)+B_{n} \sin (\sqrt{\lambda} a)=0 \\
& A_{n} \cos (\sqrt{\lambda} b)+B_{n} \sin (\sqrt{\lambda} b)=0
\end{aligned}
$$

Therefore, we look for non-trivial solutions to this system. Using linear algebra and/or Cramer's rule, we know that there is a non-trivial solution if the determinant of the coefficient matrix is zero:

$$
\cos (\sqrt{\lambda} a) \sin (\sqrt{\lambda} b)-\cos (\sqrt{\lambda} b) \sin (\sqrt{\lambda} a)=0
$$

or, if $\sin (\sqrt{\lambda}(b-a))=0$. Therefore, we have:

$$
\lambda_{n}=\left(\frac{n \pi}{b-a}\right)^{2} \quad \phi_{n}(x)=\sin \left(n \pi \frac{x-a}{b-a}\right) \sin (\sqrt{\lambda} a)
$$

(b) $\phi^{\prime}(0)=0$ and $\phi^{\prime}(L)=0$

NOTE: This one and the next are fairly standard types of problems...
SOLUTION: The solutions to the characteristic equation are $r= \pm \sqrt{-\lambda}$.

- Case 1: $\lambda=0$. The solution is $\phi(x)=C_{1}+C_{2} x$. Using the boundary conditions, $\phi(x)=C_{1}$ is a possible solution.
- Case 2: $\lambda<0$, or two real distinct solutions to the characteristic equation. In this case, writing the solutions in exponential form, we have

$$
\phi(x)=C_{1} \mathrm{e}^{\sqrt{-\lambda} x}+C_{2} \mathrm{e}^{-\sqrt{-\lambda} x}
$$

Using the boundary conditions, we have:

$$
\begin{array}{r}
\sqrt{-\lambda} C_{1}-\sqrt{-\lambda} C_{2}=0 \\
\sqrt{-\lambda} C_{1} \mathrm{e}^{\sqrt{-\lambda} L}-\sqrt{-\lambda} C_{2} \mathrm{e}^{-\sqrt{-\lambda} L}=0
\end{array}
$$

The only solution to this system is $C_{1}=C_{2}=0$, so this has only the trivial solution.

- Finally, if $\lambda>0$, we have our usual solution:

$$
\phi(x)=A_{n} \cos (\sqrt{\lambda} x)+B_{n} \sin (\sqrt{\lambda} x)
$$

With the boundary conditions, we have:

$$
\begin{gathered}
\phi^{\prime}(0)=0 \quad \Rightarrow \quad \sqrt{\lambda} B_{n}=0 \quad \Rightarrow \quad B_{n}=0 \\
\phi^{\prime}(L)=0 \quad \Rightarrow \quad-\sqrt{\lambda} A_{n} \sin (\sqrt{\lambda} L)=0 \quad \Rightarrow \quad \lambda_{n}=\left(\frac{n \pi}{L}\right)^{2}
\end{gathered}
$$

and

$$
\phi_{n}(x)=\cos \left(\frac{n \pi x}{L}\right)
$$

(And we don't want to forget $\lambda_{0}=1$ with $\phi_{0}(x)=1$)
(c) $\phi(0)=0$ and $\phi^{\prime}(L)=0$

SOLUTION: With the same solution to the characteristic equation, we have:

- $\lambda=0: \phi(x)=C_{1}+C_{2} x$. With the two boundary conditions, $\phi(x)=0$ is the only solution.
- $\lambda<0$, and we get two distinct real solutions. Putting in the boundary conditions will yield a system for which the only solution is $C_{1}=C_{2}=0$.
- The last case: $\lambda>0$:

$$
\phi_{n}(x)=A_{n} \cos (\sqrt{\lambda} x)+B_{n} \sin (\sqrt{\lambda} x)
$$

The first condition, $\phi(0)=0$ makes $A_{n}=0$, leaving only the sine expansion. The second condition is satisified if:

$$
\sqrt{\lambda} B_{n} \cos (\sqrt{\lambda} L)=0 \quad \Rightarrow \quad \sqrt{\lambda} L=\frac{2 n-1}{2} \pi
$$

(That is, we need odd multiples of $\pi / 2$ for the cosine). Therefore, we now have

$$
\lambda_{n}=\left(\frac{(2 n-1) \pi}{2 L}\right)^{2} \quad \phi_{n}(x)=\sin \left(\frac{(2 n-1) \pi}{2 L} x\right)
$$

10. Solve

$$
u_{t t}=\frac{4}{r} \frac{\partial}{\partial r}\left(r \frac{\partial u}{\partial r}\right) \quad 0<r<1, t>0
$$

with $u(r, 0)=f(r), u(0, t)$ bounded and $u(1, t)=0$. You should assume that the (radial) eigenfunctions are known and complete.

NOTE: We can leave 4 with ϕ or with T - In the solution below, we group it with T, but that isn't the only way to solve this.

SOLUTION: Using separation of variables with $u=\phi(r) T(t)$, we have:

$$
\phi(r) T^{\prime \prime}(t)=\frac{4}{r}(r \phi(r) T(t))_{r} \quad \Rightarrow \quad \frac{T^{\prime \prime}}{4 T}=\frac{1}{\phi r}\left(r \phi^{\prime}(r)\right)_{r}=-\lambda
$$

Therefore, dividing everything by $4 \phi T$, we have:

$$
\left(r \phi^{\prime}(r)\right)^{\prime}=-\lambda r \phi \quad T^{\prime \prime}=-4 \lambda T
$$

The radial equation is in S-L form with $p(r)=r, q=0$ and $\sigma(r)=r$. To solve the time equation, it is good to first see if we have any negative eigenvalues by checking the Rayleigh quotient:

$$
\lambda_{1}=R\left(\phi_{1}\right)=\frac{-\left.r \phi \phi^{\prime}\right|_{0} ^{1}+\int_{0}^{1} r\left(\phi^{\prime}\right)^{2} d r}{\int_{0}^{1} \phi^{2} r d r}
$$

From the boundary conditions, we know $\phi(1)=0$ and $|\phi(r)|$ is bounded at $r=0$. The Rayleigh quotient then simplifies to:

$$
\lambda_{1}=\frac{\int_{0}^{1} r\left(\phi^{\prime}\right)^{2} d r}{\int_{0}^{1} \phi^{2} r d r}
$$

For $\lambda_{1}=0$, we would require $\phi^{\prime}=0$, or $\phi(x)=C$. But $\phi(1)=0$ would make this the trivial solution. Therefore, $\lambda_{1}>0$.
Now proceeding to the time equation with $\lambda>0$:

$$
T(t)=A_{n} \cos (\sqrt{\lambda} t)+B_{n} \sin (\sqrt{\lambda} t)
$$

and the general solution is:

$$
u(r, t)=\sum_{n=1}^{\infty} \phi_{n}(r)\left(A_{n} \cos \left(\sqrt{\lambda_{n}} t\right)+B_{n} \sin \left(\sqrt{\lambda_{n}} t\right)\right)
$$

with

$$
u(r, 0)=f(r)=\sum_{n=1}^{\infty} A_{n} \phi_{n}(r) \quad \Rightarrow \quad A_{n}=\frac{\int_{0}^{1} f(r) \phi_{n}(r) r d r}{\int_{0}^{1} \phi_{n}^{2}(r) r d r}
$$

(Remember to multiply by r, which is required for orthogonality to hold).
11. Given the BVP in regular S-L form, with appropriate boundary conditions, show that the eigenfunctions corresponding to two distinct eigenvalues are orthogonal with respect to $\sigma(x)$. Hint: Consider

$$
\int_{a}^{b} \phi_{n} L\left(\phi_{m}\right)-\phi_{m} L\left(\phi_{n}\right) d x
$$

SOLUTION: Recall that for L to be the S-L operator, we have:

$$
L(\phi)=-\lambda \sigma(x) \phi
$$

Therefore,

$$
\int_{a}^{b} \phi_{n} L\left(\phi_{m}\right)-\phi_{m} L\left(\phi_{n}\right) d x=\int_{a}^{b}-\lambda_{m} \phi_{n} \phi_{m} \sigma(x)+\lambda_{n} \phi_{m} \phi_{n} \sigma(x) d x
$$

$$
=\left(\lambda_{n}-\lambda_{m}\right) \int_{a}^{b} \phi_{n} \phi_{m} \sigma(x) d x
$$

We also know (proof using Green's formula) that if u, v satisfy the (regular) boundary conditions, then

$$
\int_{a}^{b} u L(v)-v L(u) d x=0
$$

And our ϕ_{n}, ϕ_{m} do indeed satisfy the BCs. Therefore, we conclude that

$$
\left(\lambda_{n}-\lambda_{m}\right) \int_{a}^{b} \phi_{n} \phi_{m} \sigma(x) d x=0
$$

Since $\lambda_{n} \neq \lambda_{m}$, the integral must be zero (for any $n \neq m$).
12. Solve using separation of variables:

$$
\begin{array}{ll}
\mathrm{PDE} & u_{t t}=u_{x x} \quad 0<x<1, t>0 \\
\mathrm{BCs} & u(0, t)=0 \quad u(1, t)=0 \\
\mathrm{ICs} & u(x, 0)=\sin (\pi x)+\frac{1}{2} \sin (3 \pi x)+3 \sin (7 \pi x) \\
& u_{t}(x, 0)=\sin (2 \pi x)
\end{array}
$$

(Keep the constants with the spatial equation)
NOTE: In this case, there weren't any constants to keep with the spatial equation- That was a copy-paste error, so ignore it.
SOLUTION: We recognize that we'll get the standard equations for space and time, with the usual boundary conditions for the sine expansion. That is:

$$
T^{\prime \prime}=-\lambda T \quad \phi^{\prime \prime}=-\lambda \phi
$$

with

$$
\lambda_{n}=(n \pi)^{2} \quad \phi_{n}(x)=\sin (n \pi x)
$$

We won't have any zero eigenvalues, so we can also solve the temporal equation right away:

$$
T_{n}(t)=A_{n} \cos (n \pi t)+B_{n} \sin (n \pi t)
$$

so the overall solution is:

$$
u(x, t)=\sum_{n=1}^{\infty} \sin (n \pi x)\left(A_{n} \cos (n \pi t)+B_{n} \sin (n \pi t)\right)
$$

Now,

$$
u(x, 0)=\sum_{n=1}^{\infty} A_{n} \sin (n \pi x)=\sin (\pi x)+\frac{1}{2} \sin (3 \pi x)+3 \sin (7 \pi x)
$$

Therefore, $A_{1}=1, A_{3}=1 / 2, A_{7}=3$ and all other A_{n} are zero. Using the other initial condition,

$$
u_{t}(x, 0)=\sum_{n=1}^{\infty} n \pi B_{n} \sin (n \pi x)=\sin (2 \pi x)
$$

Therefore, all $B_{n}=0$ except for B_{2}. In this case, $B_{2}=\operatorname{frac} 12 \pi$.
Putting all the pieces together, the solution is:

$$
u(x, t)=\cos (\pi t) \sin (\pi x)+\frac{1}{2} \cos (3 \pi t) \sin (3 \pi x)+3 \cos (7 \pi t) \sin (7 \pi x)+\frac{1}{2 \pi} \sin (2 \pi t) \sin (2 \pi x)
$$

13. Consider $L(\phi)=\phi^{\prime \prime \prime \prime}$. Find an expression like Green's Formula for this operator on $0<x<1$. HINT: Use integration by parts for $\int_{0}^{1} u L(v) d x$ until you get $\int_{0}^{1} v L(u) d x$ on the right side of the equation. That is, you should have something in the form:

$$
\int_{0}^{1} u L(v) d x=(\ldots)+\int_{0}^{1} v L(u) d x
$$

SOLUTION: Using integration by parts with a table, we have the following:

$$
\int_{0}^{1} u L(v) d x \quad \Rightarrow \quad \begin{array}{ccc}
+ & u & v^{\prime \prime \prime \prime} \\
- & u^{\prime} & v^{\prime \prime \prime} \\
+ & u^{\prime \prime} & v^{\prime \prime} \\
& - & u^{\prime \prime \prime} \\
& v^{\prime} \\
& u^{\prime \prime \prime \prime} & v
\end{array}
$$

Putting this together,

$$
\int_{0}^{1} u L(v) d x=\left.\left(u v^{\prime \prime \prime}-u^{\prime} v^{\prime \prime}+u^{\prime \prime} v^{\prime}-u^{\prime \prime \prime} v\right)\right|_{0} ^{1}+\int_{0}^{1} v u^{\prime \prime \prime \prime} d x
$$

Therefore,

$$
\int_{0}^{1} u L(v)-v L(u) d x=\left.\left(u v^{\prime \prime \prime}-u^{\prime} v^{\prime \prime}+u^{\prime \prime} v^{\prime}-u^{\prime \prime \prime} v\right)\right|_{0} ^{1}
$$

14. Consider

$$
\begin{aligned}
\rho u_{t t} & =T_{0} u_{x x}+\alpha u \\
u(0, t)=u(L, t) & =0 \\
u(x, 0) & =f(x) \\
u_{t}(x, 0) & =g(x)
\end{aligned}
$$

with $\rho(x)>0, \alpha(x)<0$, and T_{0} constant.
Assume that the appropriate eigenfunctions (in space) are known. Solve the PDE using separation of variables.
SOLUTION: See 5.4.5, included below.
Separation of variables will lead to our usual two ODEs, one in time, one in space:

$$
\begin{aligned}
(\text { time }) h^{\prime \prime}+\lambda h & =0 \\
\text { (space) } \phi^{\prime \prime}+\frac{\alpha}{T_{0}} \phi+\lambda \frac{\rho}{T_{0}} \phi & =0
\end{aligned}
$$

The spatial equation is a regular Sturm-Liouville problem with $p(x)=T_{0}$ (constant), $q(x)=\alpha<0$ and $\sigma(x)=\rho(x)>0$. The Rayleigh quotient then becomes:

$$
\lambda=\frac{0+\int_{0}^{L} T_{0}\left(\phi^{\prime}\right)^{2}-\alpha \phi^{2} d x}{\int_{0}^{L} \phi^{2} \rho d x}
$$

Since $\alpha<0$, this quotient is greater than zero (zero only when $\phi=0$). Therefore, we know $\lambda_{n}>0$. Therefore, the solutions to the time equation are:

$$
h_{n}(t)=c_{n} \cos \left(\sqrt{\lambda_{n}} t\right)+d_{n} \sin \left(\sqrt{\lambda_{n}} t\right)
$$

Using the superposition, we have

$$
\begin{aligned}
u(x, t) & =\sum_{n=1}^{\infty} \phi_{n}(x)\left[a_{n} \cos \left(\sqrt{\lambda_{n}} t\right)+b_{n} \sin \left(\sqrt{\lambda_{n}} t\right)\right] \\
u(0, t) & =\sum_{n=1}^{\infty} a_{n} \phi_{n}(x)=f(x) \\
a_{n} & =\frac{\left(f, \sigma \phi_{n}\right)}{\left(\phi_{n}, \sigma \phi_{n}\right)}
\end{aligned}
$$

where $\sigma=\rho / T_{0}$, and (f, g) is the inner product

$$
(f, g)=\int_{0}^{L} f(x) g(x) d x
$$

Also, for initial velocity

$$
\begin{aligned}
u_{t}(x, t) & =\sum_{n=1}^{\infty} \phi_{n}(x)\left[-a_{n} \sqrt{\lambda_{n}} \sin \left(\sqrt{\lambda_{n}} t\right)+b_{n} \sqrt{\lambda_{n}} \cos \left(\sqrt{\lambda_{n}} t\right)\right] \\
u_{t}(0, t) & =\sum_{n=1}^{\infty} b_{n} \sqrt{\lambda_{n}} \phi_{n}(x)=g(x) \\
b_{n} & =\frac{1}{\sqrt{\lambda_{n}}} \frac{\left(g, \sigma \phi_{n}\right)}{\left(\phi_{n}, \sigma \phi_{n}\right)}
\end{aligned}
$$

15. Use the Rayleigh quotient to obtain a reasonably accurate upper bound for the lowest eigenvalue of

$$
\phi^{\prime \prime}+(\lambda-x) \phi=0 \quad \phi^{\prime}(0)=0 \quad \phi^{\prime}(1)+2 \phi(1)=0
$$

SOLUTION: Find the simplest (nonzero!) function that satisfies the boundary conditions. A constant or a line will be trivial, so the next best thing is a polynomial of degree 2 :

$$
u(x)=a x^{2}+b x+c \quad u^{\prime}(0)=0 \quad \Rightarrow b=0
$$

Now, with $\phi^{\prime}(1)+2 \phi(1)=0$, we have: $(2 a)+2(a+c)=0$ or $4 a+2 b=0$, or $b=-2 a$. For example, we can try

$$
u=x^{2}-2
$$

Now, with $p(x)=1, \sigma(x)=1$, and $q(x)=-x$, the Rayleigh quotient is:

$$
\lambda \leq \frac{0+\int_{0}^{1}(2 x)^{2}+x\left(x^{2}-2\right)^{2} d x}{\int_{0}^{1}\left(x^{2}-2\right)^{2} d x} \approx 0.87
$$

16. Use the alternate form of the Rayleigh quotient below to compute $R(u)$, if λ_{n} are the eigenvalues, ϕ_{n} the eigenfunctions, and $u=2 \phi_{1}+3 \phi_{2}$. To simplify our computations, you may assume that the eigenfunctions have been normalized so that $\int_{a}^{b} \phi_{n}^{2} \sigma(x) d x=1$. In that case, the Rayleigh quotient simplifies to:

$$
R(\phi)=-\int_{a}^{b} \phi L(\phi) d x
$$

NOTE: This exercise is to familiarize you with the technique we used in proving the minimization principle...

SOLUTION:

$$
u=2 \phi_{1}+3 \phi_{2} \quad \Rightarrow \quad L(u)=-2 \lambda_{1} \sigma(x) \phi_{1}-3 \lambda_{2} \sigma(x) \phi_{2}
$$

so that when we multiply $u L(u)$, we will have mixed terms $\phi_{i} \phi_{j}$, so we integrate to make them zero, and we're left with:

$$
-\int_{a}^{b} u L(u) d u=2^{2} \lambda_{1}^{2} \int_{a}^{b} \phi_{1}^{2} \sigma(x) d x+3^{2} \lambda_{2}^{2} \int_{a}^{b} \phi_{2}^{2} \sigma(x) d x=4 \lambda_{1}^{2}+9 \lambda_{2}^{2}
$$

Similarly,

$$
\int_{a}^{b} u^{2} \sigma(x) d x=2^{2} \int_{a}^{b} \phi_{1}^{2} \sigma(x) d x+3^{2} \int_{a}^{b} \phi_{2}^{2} \sigma(x) d x=2^{2}+3^{2}=13
$$

Therefore,

$$
R(u)=\frac{4}{13} \lambda_{1}+\frac{9}{13} \lambda_{2}
$$

17. Suppose we define a linear operator as: $L(y)=y^{\prime}$, where y satisfies the $\mathrm{BCs} y(0)-3 y(1)=0$. Find an expression for the adjoint operator L^{*} so that

$$
\langle u, L(v)\rangle=\left\langle L^{*}(u), v\right\rangle
$$

You may assume that $\langle f, g\rangle=\int_{0}^{1} f(t) g(t) d t$. You should also determine the BCs for functions used by L^{*}.

SOLUTION: We write out $\langle u, L(v)\rangle$, then we do something so that v factors out, leaving an expression in u (typically this means integration by parts):

$$
\left.\int_{0}^{1} u v^{\prime} d x \quad \Rightarrow \quad \begin{array}{ccc}
+ & u & v^{\prime} \\
- & u^{\prime} & v
\end{array} \Rightarrow u v\right|_{0} ^{1}-\int_{0}^{1} v u^{\prime} d x
$$

Work with the constant term, and note that u satisfies the BCs given in the problem (but v may not):

$$
u(1) v(1)-u(0) v(0)=u(1) v(1)-3 u(1) v(0)=u(1)(v(1)-3 v(0))
$$

Therefore, we can say that $L^{*}(v)=-v^{\prime}$ and the BC is $v(1)-3 v(0)=0$ (which has an interesting relationship to the original BC). As a side remark, we note that $L \neq L^{*}$ (and the domains are also different), so differentiation is not self-adjoint (but the second derivative is).

