Extra Practice:

Solve the Wave Equation, one free, one fixed

NOTE: It would be better to use d'Alembert's solution (which is covered later). This is only for practice manipulating these series when separating variables.

The PDE we consider is:

$$
\begin{array}{rlc}
\mathrm{PDE} & u_{t t}=c^{2} u_{x x} & 0<x<L \\
\mathrm{BCs} & u(0, t)=0, \quad u_{x}(L, t)=0 \\
\mathrm{ICs} & u(x, 0)=f(x) \quad u_{t}(x, 0)=g(x)
\end{array}
$$

We'll solve using separation of variables:

$$
u=X T \quad \Rightarrow \quad X T^{\prime \prime}=c^{2} X^{\prime \prime} T \quad \Rightarrow \quad \frac{T^{\prime \prime}}{c^{2} T}=\frac{X^{\prime \prime}}{X}=-\lambda
$$

Therefore, splitting the ODEs up, we have:

$T^{\prime \prime}+\lambda c^{2} T=0$		$X^{\prime \prime}+\lambda X=0$ $X(0)=0, X^{\prime}(L)=0$		
$T(t)=0$	$\lambda=0$	$X(x)=0$		
	$\lambda<0$	$X(x)=C_{1} \mathrm{e}^{\sqrt{-\lambda} x}+C_{2} \mathrm{e}^{-\sqrt{-\lambda} x}$ $X(0)=0, X^{\prime}(L)=0 \Rightarrow \quad X(x)=0$ $\quad \lambda>0$		$X(x)=C_{1} \cos (\sqrt{\lambda} x)+C_{2} \sin (\sqrt{\lambda} x)$
:---				

Finishing up this last solution in X, T, we see that for X,

$$
X(0)=0 \quad \Rightarrow \quad C_{1}=0
$$

For the other end, for $n=1,2,3, \cdots$,

$$
X^{\prime}(L)=0 \quad \Rightarrow \quad \sqrt{\lambda} C_{2} \cos (\sqrt{\lambda} L)=0 \quad \Rightarrow \quad \sqrt{\lambda} L=\frac{(2 n-1) \pi}{2}
$$

Therefore, the eigenvalues and eigenfunctions are:

$$
\lambda_{n}=\left(\frac{(2 n-1) \pi}{2 L}\right)^{2}, \quad X_{n}(x)=\sin \left(\frac{(2 n-1) \pi}{2 L} x\right)
$$

For time, we have:

$$
T^{\prime \prime}+\left(\frac{(2 n-1) \pi c}{2 L}\right)^{2} T=0
$$

so that

$$
T(t)=A_{n} \cos \left(\frac{(2 n-1) \pi c}{2 L} t\right)+B_{n} \sin \left(\frac{(2 n-1) \pi c}{2 L} t\right)
$$

The general solution is:

$$
u(x, t)=\sum_{n=1}^{\infty} \sin \left(\frac{(2 n-1) \pi}{2 L} x\right)\left(A_{n} \cos \left(\frac{(2 n-1) \pi c}{2 L} t\right)+B_{n} \sin \left(\frac{(2 n-1) \pi c}{2 L} t\right)\right)
$$

To solve for the coefficients, we go back to the initial conditions:

$$
u(x, 0)=\sum_{n=1}^{\infty} A_{n} \sin \left(\frac{(2 n-1) \pi}{2 L} x\right)=f(x)
$$

Therefore, these coefficients are the Fourier cosine coefficients for $f(x)$:

$$
A_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \left(\frac{(2 n-1) \pi}{2 L} x\right) d x, \text { for } n=1,2,3, \cdots
$$

Similarly,

$$
u_{t}(x, 0)=\sum_{n=1}^{\infty} B_{n} \frac{(2 n-1) \pi c}{L} \sin \left(\frac{(2 n-1) \pi}{2 L} x\right)=g(x)
$$

Therefore,

$$
B_{n} \frac{(2 n-1) \pi c}{2 L}=\frac{2}{L} \int_{0}^{L} g(x) \sin \left(\frac{(2 n-1) \pi}{2 L} x\right) d x, \text { for } n=1,2,3, \cdots
$$

