Extra Practice: Exercise 4.4.3

Consider a slightly damped vibrating string that satisfies:

$$
\rho_{0} u_{t t}=T_{0} u_{x x}-\beta u_{t}
$$

1. Briefly explain why $\beta>0$.

Extra HINT: Look at the how the acceleration and u are related by considering

$$
\rho_{0} u_{t t}=-\beta u_{t}
$$

SOLUTION: We see here that with $\beta>0$, the force of acceleration is acting in the opposite direction as the velocity, so this is friction.
2. Assume that ρ_{0}, T_{0} and β are constants, and determine the solution by separation of variables that satisfy the given conditions:

$$
\begin{array}{ll}
\mathrm{BCs} & u(0, t)=0 \quad u(L, t)=0 \\
\mathrm{ICs} & u(x, 0)=f(x) \quad u_{t}(x, 0)=g(x)
\end{array}
$$

And assume that β is small, $\beta^{2}<4 \pi^{2} \rho_{0} T_{0} / L^{2}$.
SOLUTION: Let $u=X T$ as usual, and substitute into the PDE to get

$$
\rho_{0} X T^{\prime \prime}=T_{0} X^{\prime \prime} T-\beta X T^{\prime} \quad \Rightarrow \quad \rho_{0} X T^{\prime \prime}+\beta X T^{\prime}=T_{0} X^{\prime \prime} T
$$

With the boundary conditions, it might be easiest to keep the constants with T. To do that, divide both sides by $T_{0} X T$ to get:

$$
\frac{\rho_{0} T^{\prime \prime}+\beta T^{\prime}}{T_{0} T}=\frac{X^{\prime \prime}}{X}=-\lambda
$$

Analyzing the spatial ODE first, we get our familiar BVP

$$
X^{\prime \prime}+\lambda X=0, \quad X(0)=0 \quad X(L)=0
$$

so that $\lambda=0, \lambda<0$ lead us to the trivial solution, and the eigenvalues and eigenfunctions are:

$$
\lambda_{n}=\left(\frac{n \pi}{L}\right)^{2} \quad X_{n}(x)=\sin \left(\frac{n \pi}{L} x\right)
$$

Now we solve the time-dependent ODE

$$
\rho_{0} T^{\prime \prime}+\beta T^{\prime}=-\lambda T_{0} T \Rightarrow \rho_{0} T^{\prime \prime}+\beta T^{\prime}+\lambda T_{0} T=0
$$

The characteristic equation is, and solve using the quadratic formula:

$$
\rho_{0} r^{2}+\beta r+\lambda T_{0}=0 \Rightarrow r=\frac{-\beta \pm \sqrt{\beta^{2}-4 \lambda T_{0} \rho_{0}}}{2 \rho_{0}}
$$

Using the assumption (and the definition of λ_{n}), we can show that the roots are complex:

$$
\beta^{2}<\frac{4 \pi^{2} \rho_{0} T_{0}}{L^{2}}<4 \frac{n^{2} \pi^{2}}{L^{2}} \rho_{0} T_{0} \quad \text { for } n=1,2,3, \cdots
$$

Therefore, the discriminant is negative, and the roots are complex. We also don't want to get hung up in the notation, so let's make a couple of substitutions:

$$
r=-\frac{\beta}{2 \rho_{0}} \pm \frac{\sqrt{4 \lambda_{n} T_{0} \rho_{0}-\beta^{2}}}{2 \rho_{0}} i=\gamma \pm \omega_{n} i
$$

(note that ω depends on λ_{n}, thus the ω_{n} notation). Using this substitution, the solutions in time are the following, and for future reference, the derivative is given as well:

$$
T_{n}(t)=\mathrm{e}^{\gamma t}\left(A_{n} \cos \left(\omega_{n} t\right)+B_{n} \sin \left(\omega_{n} t\right)\right)
$$

with

$$
T_{n}^{\prime}(t)=\gamma \mathrm{e}^{\gamma t}\left(A_{n} \cos \left(\omega_{n} t\right)+B_{n} \sin \left(\omega_{n} t\right)\right)+\mathrm{e}^{\gamma t}\left(-A_{n} \omega_{n} \sin \left(\omega_{n} t\right)+B_{n} \omega_{n} \cos \left(\omega_{n} t\right)\right)
$$

Taking the superposition:

$$
u(x, t)=\sum_{n=1}^{\infty} \mathrm{e}^{\gamma t}\left(A_{n} \cos \left(\omega_{n} t\right)+B_{n} \sin \left(\omega_{n} t\right)\right) \sin \left(\frac{n \pi}{L} x\right)
$$

To find A_{n}, B_{n}, we use the initial position and velocity:

$$
u(x, 0)=f(x)=\sum_{n=1}^{\infty} A_{n} \sin \left(\frac{n \pi}{L} x\right) \quad \Rightarrow \quad A_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \left(\frac{n \pi}{L} x\right) d x
$$

And differentiating, we get the following (the derivative was computed earlier):

$$
u_{t}(x, 0)=g(x)=\sum_{n=1}^{\infty} T_{n}^{\prime}(0) \sin \left(\frac{n \pi}{L} x\right)=\sum_{n=1}^{\infty}\left(\gamma A_{n}+\omega_{n} B_{n}\right) \sin \left(\frac{n \pi}{L} x\right)
$$

Notice that the A_{n} have already been computed. With this, we can solve for the B_{n} :

$$
\left(\gamma A_{n}+\omega_{n} B_{n}\right)=\frac{2}{L} \int_{0}^{L} g(x) \sin \left(\frac{n \pi}{L} x\right) d x
$$

with

$$
B_{n}=-\frac{\gamma}{\omega_{n}} A_{n}+\frac{2}{\omega_{n} L} \int_{0}^{L} g(x) \sin \left(\frac{n \pi}{L} x\right) d x
$$

A little commentary: As nasty as this may look, adding friction (β) ended up just multiplying our previous solution(s) by

$$
\mathrm{e}^{\gamma t}=\mathrm{e}^{\frac{-\beta}{2 \rho_{0}} t}
$$

which dampens out the oscillations. Adding the dampening also affected the natural frequencies as well, but this was expected- the same thing happened in Math 244 in our analysis of the mass-spring system:

$$
m u^{\prime \prime}+\gamma u^{\prime}+k u=0
$$

where γ was friction, k was the spring constant, m was mass.

