
Extra Practice: Exercise 4.4.3

Consider a slightly damped vibrating string that satisfies:

ρ0utt = T0uxx − βut

1. Briefly explain why β > 0.

Extra HINT: Look at the how the acceleration and u are related by considering

ρ0utt = −βut

SOLUTION: We see here that with β > 0, the force of acceleration is acting in the opposite direction
as the velocity, so this is friction.

2. Assume that ρ0, T0 and β are constants, and determine the solution by separation of variables that
satisfy the given conditions:

BCs u(0, t) = 0 u(L, t) = 0
ICs u(x, 0) = f(x) ut(x, 0) = g(x)

And assume that β is small, β2 < 4π2ρ0T0/L
2.

SOLUTION: Let u = XT as usual, and substitute into the PDE to get

ρ0XT
′′ = T0X

′′T − βXT ′ ⇒ ρ0XT
′′ + βXT ′ = T0X

′′T

With the boundary conditions, it might be easiest to keep the constants with T . To do that, divide
both sides by T0XT to get:

ρ0T
′′ + βT ′

T0T
=
X ′′

X
= −λ

Analyzing the spatial ODE first, we get our familiar BVP

X ′′ + λX = 0, X(0) = 0 X(L) = 0

so that λ = 0, λ < 0 lead us to the trivial solution, and the eigenvalues and eigenfunctions are:

λn =
(nπ
L

)2
Xn(x) = sin

(nπ
L
x
)

Now we solve the time-dependent ODE

ρ0T
′′ + βT ′ = −λT0T ⇒ ρ0T

′′ + βT ′ + λT0T = 0

The characteristic equation is, and solve using the quadratic formula:

ρ0r
2 + βr + λT0 = 0 ⇒ r =

−β ±
√
β2 − 4λT0ρ0
2ρ0

Using the assumption (and the definition of λn), we can show that the roots are complex:

β2 <
4π2ρ0T0
L2

< 4
n2π2

L2
ρ0T0 for n = 1, 2, 3, · · ·

Therefore, the discriminant is negative, and the roots are complex. We also don’t want to get hung up
in the notation, so let’s make a couple of substitutions:

r = − β

2ρ0
±
√

4λnT0ρ0 − β2

2ρ0
i = γ ± ωni
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(note that ω depends on λn, thus the ωn notation). Using this substitution, the solutions in time are
the following, and for future reference, the derivative is given as well:

Tn(t) = eγt (An cos(ωnt) +Bn sin(ωnt))

with
T ′
n(t) = γeγt (An cos(ωnt) +Bn sin(ωnt)) + eγt (−Anωn sin(ωnt) +Bnωn cos(ωnt))

Taking the superposition:

u(x, t) =

∞∑
n=1

eγt(An cos(ωn t) +Bn sin(ωn t)) sin
(nπ
L
x
)

To find An, Bn, we use the initial position and velocity:

u(x, 0) = f(x) =

∞∑
n=1

An sin
(nπ
L
x
)
⇒ An =

2

L

∫ L

0

f(x) sin
(nπ
L
x
)
dx

And differentiating, we get the following (the derivative was computed earlier):

ut(x, 0) = g(x) =

∞∑
n=1

T ′
n(0) sin

(nπ
L
x
)

=

∞∑
n=1

(γAn + ωnBn) sin
(nπ
L
x
)

Notice that the An have already been computed. With this, we can solve for the Bn:

(γAn + ωnBn) =
2

L

∫ L

0

g(x) sin
(nπ
L
x
)
dx

with

Bn = − γ

ωn
An +

2

ωnL

∫ L

0

g(x) sin
(nπ
L
x
)
dx

A little commentary: As nasty as this may look, adding friction (β) ended up just multiplying our
previous solution(s) by

eγt = e
−β
2ρ0

t

which dampens out the oscillations. Adding the dampening also affected the natural frequencies as well, but
this was expected- the same thing happened in Math 244 in our analysis of the mass-spring system:

mu′′ + γu′ + ku = 0

where γ was friction, k was the spring constant, m was mass.
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