An exploration of the Bessel functions as basis functions
We want to examine how it is that $J _m($ sqrt(\lambda) r) can form a basis with fixed m . In this worksheet, we look at the Bessel function of order 0 (we'll fix the radius to be: $0<r<1$ instead of generic "a"):
(i) There are $\mathrm{n}-1$ zeros in the interval from 0 to 1 .
(ii) We form a partial expansion of a function to see if it is "close" to the original.

The family of functions is indexed by the zeros of the Bessel function, so we'll get 6 of those first:
> k:=5; NumFuncs:=20;
A:=seq(evalf(BesselJZeros(k,n)), $\mathrm{n}=1$..NumFuncs);

$$
k:=5
$$

NumFuncs:= 20
$A:=8.771483816,12.33860420,15.70017408,18.98013388,22.21779990$, 57.11730278, 60.27024507, 63.42205405, 66.57289189, 69.72289116

Plot some of the functions, indexed by $1,2,3$ (then $4,5,6$)
> plot([BesselJ(k,A[1]*x),BesselJ(k,A[2]*x),BesselJ(k,A[3]*x)],x=0. .1,color=[red,green,blue]);

You'll note from the graph that the nth function has $n-1$ zeros (do not count the endpoints)

Now we'll compute the first 6 coefficients to a Bessel series expansion. In this example, the function we'll represent is $F(r)=\sin (2 \backslash p i r)$

After computing the coefficients, we'll plot the partial sum to see how close it is.
[>F:=sin(2*Pi*r);

$$
\begin{equation*}
F:=\sin (2 \pi r) \tag{2}
\end{equation*}
$$

- for m from 1 to NumFuncs do

Coeffs[m]:=evalf(int(F*BesselJ(k, A[m]*r)*r,r=0..1))/int((BesselJ(k,A[m]*r))^2*r,r=0..1); end do;

$$
\begin{aligned}
\text { Coeffs }_{1} & :=-2.311958095 \\
\text { Coeffs }_{2} & :=1.062749670 \\
\text { Coeffs }_{3} & :=1.145041091
\end{aligned}
$$

$$
\begin{aligned}
& \text { Coeffs }_{4}:=0.9745871540 \\
& \text { Coeffs }_{5}:=0.7676220278 \\
& \text { Coeffs }_{6}:=0.6303499151 \\
& \text { Coeffs }_{7}:=0.5078970456 \\
& \text { Coeffs }_{8}:=0.4274822289 \\
& \text { Coeffs }_{9}:=0.3550973874 \\
& \text { Coeffs }_{10}:=0.3061939710 \\
& \text { Coeffs }_{11}:=0.2607334357 \\
& \text { Coeffs }_{12}:=0.2292581105 \\
& \text { Coeffs }_{13}:=0.1990528692 \\
& \text { Coeffs }_{14}:=0.1777546585 \\
& \text { Coeffs }_{15}:=0.1567298020 \\
& \text { Coeffs }_{16}:=0.1417080299 \\
& \text { Coeffs }_{17}:=0.1265075310 \\
& \text { Coeffs }_{18}:=0.1155444566 \\
& \text { Coeffs }_{19}:=0.1042068713 \\
& \text { Coeffs }_{20}:=0.09597564753 \\
& m:=m \\
& \text { > G:=sum(Coeffs[m]*BesselJ(k,A[m]*r),m=1..NumFuncs); } \\
& G:=-2.311958095 \operatorname{BesselJ}(5,8.771483816 r)+1.062749670 \operatorname{BesselJ}(5 \text {, } \\
& 12.33860420 r)+1.145041091 \operatorname{BesselJ}(5,15.70017408 r) \\
& +0.9745871540 \operatorname{BesselJ}(5,18.98013388 r)+0.7676220278 \text { BesselJ(5, } \\
& 22.21779990 r)+0.6303499151 \operatorname{BesselJ}(5,25.43034115 r) \\
& +0.5078970456 \operatorname{BesselJ}(5,28.62661831 r)+0.4274822289 \operatorname{BesselJ}(5 \text {, } \\
& 31.81171672 r)+0.3550973874 \operatorname{BesselJ}(5,34.98878129 r) \\
& +0.3061939710 \operatorname{BesselJ}(5,38.15986856 r)+0.2607334357 \operatorname{BesselJ}(5 \text {, } \\
& 41.32638325 r)+0.2292581105 \operatorname{BesselJ}(5,44.48931912 r) \\
& +0.1990528692 \operatorname{BesselJ}(5,47.64939981 r)+0.1777546585 \operatorname{BesselJ}(5 \text {, } \\
& 50.80716520 r)+0.1567298020 \operatorname{BesselJ}(5,53.96302656 r) \\
& +0.1417080299 \operatorname{BesselJ}(5,57.11730278 r)+0.1265075310 \operatorname{BesselJ}(5 \text {, } \\
& +0.1042068713 \operatorname{BesselJ}(5,66.57289189 r)+0.09597564753 \operatorname{BesselJ}(5 \text {, } \\
& 69.72289116 r \text {) } \\
& \text { [> plot(\{G,F\},r=0..1); }
\end{aligned}
$$

