
Problem Set 8 (4.3, 4.4)

Due: 4.3: 1, 5, 12(a) and 4.2: 1,4

Remember to use our form of the solution:

y′′ + ω2y = 0
y(t) = C1 cos(ωt) + C2 sin(ωt)

y′′ − ω2y = 0
y(t) = C1 cosh(ωt) + C2 sinh(ωt)

4.3.1 Solve Laplace’s equation:

uxx + uyy = 0, 0 < x < 1, 0 < y < 2
u(x, 0) = 0
u(x, 2) = 10
u(0, y) = 0
u(1, y) = 0

SOLUTION: Separate variables and get the eigenfunctions. Because we have X(0) = 0
and X(1) = 0, we’ll take the eigenfunctions in X.

X ′′Y + Y ′′X = 0 ⇒ X ′′Y + Y ′′X

XY
= 0 ⇒ X ′′

X
= −Y

′′

Y
= −λ

Therefore,
X ′′ + λX = 0

X(0) = X(1) = 0
Y ′′ − λY = 0

For the BVP in X, we know that λn = n2π2 and Xn(x) = sin(nπx).

Now that we have λ, solve for Y :

Y ′′ − n2π2Y = 0 ⇒ Yn(y) = cn cosh(nπy) + dn sinh(nπy)

Putting our solution together,

u(x, y) =
∞∑
n=1

sin(nπx) [cn cosh(nπy) + dn sinh(nπy)]

That takes care of everything except for the initial condition. Recall that cosh(0) = 1
and sinh(0) = 0 so that Yn(0) = cn:

u(x, 0) = 0 =
∞∑
n=1

cn sin(nx) ⇒ cn = 0

That simplifies our solution so far to:

u(x, y) =
∞∑
n=1

dn sin(nπx) sinh(nπy)
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The last boundary condition will define dn: u(x, 2) = 10, so expand 10 in a Fourier
sine series in x (with 0 < x < 1).

dn sinh(2nπ) =
2

1

∫ 1

0
10 sin(nπx) dx =

(−20

πn
cos(nπx)

∣∣∣∣1
0

= − 20

πn
((−1)n−1) =

{
40/nπ if n odd

0 if n even

Don’t forget to divide by the hyperbolic sine! Using only the odd indices then n =
2k − 1, we get

u(x, y) =
40

π

∞∑
k=1

1

(2k − 1) sinh(2nπ)
sin((2k − 1)πx) sinh(nπy)

4.3.5 Solve Laplace’s equation:

uxx + uyy = 0, 0 < x < 1, 0 < y < 2
u(x, 0) = 0
u(x, 2) = 0
u(0, y) = y
u(1, y) = 2y

SOLUTION: Separate variables and get the eigenfunctions. Because we have Y (0) = 0
and Y (2) = 0, we’ll take the eigenfunctions in Y .

X ′′Y + Y ′′X = 0 ⇒ X ′′Y + Y ′′X

XY
= 0 ⇒ Y ′′

Y
= −X

′′

X
= −λ

Therefore,
Y ′′ + λY = 0

Y (0) = Y (2) = 0
X ′′ − λX = 0

For the BVP in Y , we know that λn = n2π2

4
and Yn(x) = sin

(
nπ
2
y
)
.

Now that we have λ, solve for X:

X ′′ − n2π2

4
X = 0 ⇒ Xn(x) = cn cosh

(
nπ

2
x
)

+ dn sinh
(
nπ

2
x
)

Putting our solution together,

u(x, y) =
∞∑
n=1

sin
(
nπ

2
y
) [
cn cosh

(
nπ

2
x
)

+ dn sinh
(
nπ

2
x
)]

That takes care of everything except for u(0, y) = y and u(2, y) = u(2, y). These are
similar formulas:

u(0, y) =
∞∑
n=1

cn sin
(
nπy

2

)
= y ⇒ cn =

2

2

∫ 2

0
y sin

(
nπy

2

)
dy
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We’ll compute that at the end, but consider cn as “computed”. Continuing:

u(1, y) =
∞∑
n=1

sin
(
nπ

2
y
) [
cn cosh

(
nπ

2

)
+ dn sinh

(
nπ

2

)]
=
∞∑
n=1

Kn sin
(
nπ

2
y
)

where

Kn =
2

2

∫ 2

0
2y sin

(
nπy

2

)
dy, so that Kn = 2cn

Continuing to solve for dn, we have

Kn = 2cn = cn cosh
(
nπ

2

)
+ dn sinh

(
nπ

2

)
Therefore,

dn =
2− cosh(nπ/2)

sinh(nπ/2)
cn

Lastly, computing cn uses integration by parts:

cn =
4

nπ
(−1)n+1

4.3.12(a) We want to consider how to use the solutions to the previous two PDEs,

uxx + uyy = 0, 0 < x < 1, 0 < y < 2
u(x, 0) = 0
u(x, 2) = 10
u(0, y) = 0
u(1, y) = 0

uxx + uyy = 0, 0 < x < 1, 0 < y < 2
u(x, 0) = 0
u(x, 2) = 0
u(0, y) = y
u(1, y) = 2y

To solve the PDE:

uxx + uyy = 0, 0 < x < 1, 0 < y < 2
u(x, 0) = 0
u(x, 2) = 10
u(0, y) = y
u(1, y) = 2y

SOLUTION: If u1 solves the upper left PDE and u2 solves the upper right PDE, then
the overall solution is the sum:

u(x, y) = u1(x, y) + u2(x, y)

We note that both u1, u2 solve the homogeneous PDE uxx + uyy = 0, so by the super-
position principle, so does u1 +u2. The only thing left is to check that the sum satisfies
the boundary conditions:

u(x, 0) = u1(x, 0) + u2(x, 0) = 0 + 0 = 0
u(x, 2) = u1(x, 2) + u2(x, 2) = 10 + 0 = 10
u(0, y) = u1(0, y) + u2(0, y) = 0 + y = y
u(1, y) = u1(1, y) + u2(1, y) = 0 + 2y = 2y

Therefore, the sum of the solutions satisfies all boundary conditions.
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4.4

4.4.1 In this case, we don’t want to solve the PDE, we just want to “convert” the PDE into
one with homogeneous BCs.

(a)
utt = uxx, 0 < x < L, t > 0

u(x, 0) = f(x)
ut(x, 0) = g(x)
u(0, t) = T
u(L, t) = T

In this case, let u(x, t) = w(x, t) + T . Since utt = wtt and uxx = wxx, then w
would solve the wave equation. Note that w(x, t) = u(x, t)− T , so the boundary
conditions on w:

• w(x, 0) = u(x, 0)− T = f(x)− T
• wt(x, 0) = ut(x, 0)− 0 = g(x)

• w(0, t) = u(0, t)− T = T − T = 0

• w(L, t) = u(L, t)− T = T − T = 0

(b)
utt = uxx, 0 < x < L, t > 0

u(x, 0) = f(x)
ut(x, 0) = g(x)
u(0, t) = T
ux(L, t) = a

In this case, the helper function should satisfy the conditions v(0) = T and
v′(0) = a. This is a line: v(x) = ax+ T .

Now let u(x, t) = w(x, t) + ax+ T . Since utt = wtt and uxx = wxx, then w would
solve the wave equation. Note that w(x, t) = u(x, t) − ax − T , so the boundary
conditions on w:

• w(x, 0) = u(x, 0)− ax− T = f(x)− ax− T
• wt(x, 0) = ut(x, 0)− 0 = g(x)

• w(0, t) = u(0, t)− a(0)− T = T − T = 0

• wx(L, t) = ux(L, t)− a = a− a = 0

(c)
utt = uxx, 0 < x < L, t > 0

u(x, 0) = f(x)
ut(x, 0) = g(x)
ux(0, t) = a
u(L, t) = T
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In this case, the helper function should satisfy the conditions v′(0) = a and
v(L) = T . This is a line: v(x) = ax+ (T − aL).

Now let u(x, t) = w(x, t) + ax+ (T − aL). Since utt = wtt and uxx = wxx, then w
would solve the wave equation. Note that w(x, t) = u(x, t)− ax− T + aL, so the
boundary conditions on w:

• w(x, 0) = u(x, 0)− ax− T + aL = f(x)− ax− T + aL

• wt(x, 0) = ut(x, 0)− 0 = g(x)

• wx(0, t) = u(0, t)− a = a− a = 0

• w(L, t) = u(L, t)− ax− T + aL = T − aL− T + aL = 0

(d)
utt = uxx, 0 < x < L, t > 0

u(x, 0) = f(x)
ut(x, 0) = g(x)
ux(0, t) = a
ux(L, t) = a

In this case, v′(0) = v′(L) = a, so we can just make v(x) = ax.

Let u(x, t) = w(x, t) + ax. Since utt = wtt and uxx = wxx, then w would solve the
wave equation. Note that w(x, t) = u(x, t) − ax, so the boundary conditions on
w:

• w(x, 0) = u(x, 0)− ax = f(x)− ax
• wt(x, 0) = ut(x, 0)− 0 = g(x)

• wx(0, t) = ux(0, t)− a = a− a = 0

• wx(L, t) = ux(L, t)− a = a− a = 0

4.4.4 Solve the nonhomogeneou heat equation below:

ut = uxx + x, 0 < x < π, t > 0
u(x, 0) = sin(2x)
u(0, t) = 0
u(π, t) = 0

SOLUTION: Because we have X(0) = 0 and X(π) = 0, the eigenfunctions will be in
X:

λn = n2 Xn(x) = sin(nx)

Now we write the solution as:

u(x, t) =
∞∑
n=1

bn(t) sin(nx)

We also have F (x, t) = x, or

F (x, t) =
∞∑
n=1

Fn(t) sin(nx) where Fn(t) =
2

π

∫ π

0
F (x, t) sin(nx) dx
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In our case, we have no time dependence, so

x =
∞∑
n=1

Fn sin(nx) ⇒ Fn =
2

π

∫ π

0
x sin(nx) dx

so that Fn = 2
n
(−1)n+1. Putting these expressions back into the heat equation, we get

∞∑
n=1

b′n(t) sin(nx) =
∞∑
n=1

−n2bn(t) sin(nx) +
∞∑
n=1

(−1)n+12

n
sin(nx)

Before we write out the ODEs, let’s use the initial condition:

u(x, 0) = sin(2x) =
∞∑
n=1

bn(0) sin(nx)

Therefore, bn(0) = 0 except for b2(0) = 1. Now, the ODEs:

For n 6= 2, we have

b′n(t) = −n2bn(t) +
(−1)n+12

n
, bn(0) = 0

As in class, given y′ = −ky + b with y0 = 0, then

y(t) =
b

k

(
1− e−kt

)
Now backsubstituting with b = (−1)n+12/n and k = −n2, we get

bn(t) =
(−1)n+12

n3

(
1− e−n

2t
)

In the special case n = 2, we have

b′n = −4bn − 1, b2(0) = 1 ⇒ b2(t) =
5

4
e−4t − 1

4
= −1

4

(
1− e−4t

)
+ e−4t

With this, we can now write our solution as:

u(x, t) = e−4t sin(2x) +
∞∑
n=1

(−1)n+12

n3

(
1− e−n

2t
)

sin(nx)
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