
Solutions to the Review, Exam 3, Math 367

(Corrected copy, Apr 20)

1. Solve, using a suitable change of coordinates: ut + xux = 1 with u(x, 0) = f(x).

SOLUTION:
dt

1
=

dx

x
⇒ dt =

1

x
dx ⇒

∫
dt =

∫
1

x
dx

so we get t+ C = ln(x), or C = ln(x)− t. This gives the change of coordinates:

ξ = x
η = ln(x)− t

⇒ ux = uξ · 1 + uη
1
x

ut = uξ · 0 + uη(−1)
⇒ ut + xux = xuξ = ξuξ

Now the PDE becomes

ξuξ = 1 ⇒ u(ξ, η) = ln(ξ) + g(η)

(where g is arbitrary). Backsubstituting,

u(x, t) = ln(x) + g(ln(x)− t)

Using the initial conditions to satisfy the initial condition:

u(x, 0) = ln(x) + g(ln(x)) = f(x) ⇒ g(ln(x)) = f(x)− ln(x)

We still want g(z), so let z = ln(x), or x = ez. Therefore,

g(z) = f(ez)− z

Now we can write the full solution as:

u(x, t) = ln(x) + g(ln(x)− t) = ln(x) + f(eln(x)−t)− (ln(x)− t)

The solution simplifies to
u(x, t) = f(xe−t) + t

2. Solve the wave equation using D’Alembert’s equation:

(a)
utt = uxx, −∞ < x < ∞, t > 0
u(x, 0) = x
ut(x, 0) = 1

SOLUTION: Using the formula

1

2
[f(x+ ct) + f(x− ct)] +

1

2c

∫ x+ct

x−ct

g(z) dz

the solution here is:

1

2
[x+ ct+ x− ct] +

1

2

∫ x+1

x−t

1 dz = x+ (x+ t)− (x− t) = x+ t
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(b)
utt = 4uxx, −∞ < x < ∞, t > 0
u(x, 0) = 0
ut(x, 0) = cos(x)

SOLUTION: Using the formula

1

2
[f(x+ ct) + f(x− ct)] +

1

2c

∫ x+ct

x−ct

g(z) dz

the solution here is:

1

4

∫ x+2t

x−2t

cos(z) dz =
1

4
sin(z)

∣∣∣∣x+2t

x−2t

=
1

4
[sin(x+ 2t)− sin(x− 2t)]

3. We’ll solve the same wave equations as the previous problem, but now the interval
is x ∈ [0, L] and use the boundary conditions: u(0, t) = u(L, t) = 0. We’ll solve
this “formally”, meaning that you should write down any integrals you would need to
evaluate, but you may leave them unevaluated.

(a)
utt = uxx, 0 < x < L, t > 0
u(x, 0) = x
ut(x, 0) = 1
u(0, t) = 0
u(L, t) = 0

SOLUTION: Separating variables,

X ′′ + λX = 0
X(0) = X(L) = 0
λn = (nπ/L)2

Xn(x) = sin(nπx/L)

T ′′ + λnT = 0
Tn(t) = cn cos(nπt/L) + dn sin(nπt/L)

Putting the solution together, we have

u(x, t) =
∞∑
n=1

sin(nπx/L) [cn cos(nπt/L) + dn sin(nπt/L)]

To find cn, dn, we use the initial conditions- For u(x, 0), we’ll have

x =
∞∑
n=1

cn sin(nπx/L) ⇒ cn =
2

L

∫ L

0

x sin(nπx/L) dx

(We can leave cn like that since we’re looking for a “formal” solution)
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Now for dn, we compute ut(x, t) first:

ut(x, t) =
∞∑
n=1

sin(nπx/L) [−(nπ/L)cn sin(nπt/L) + (nπ/L)dn cos(nπt/L)]

Now use ut(x, 0) = 1 to get

1 =
∞∑
n=1

(−nπ/L)dn sin(nπx/L) ⇒ dn =
2

nπ

∫ L

0

sin(nπx/L) dx

Now we have integral expressions for the coefficients.

(b)
utt = 4uxx, 0 < x < L, t > 0
u(x, 0) = 0
ut(x, 0) = cos(x)
u(0, t) = 0
u(L, t) = 0

SOLUTION: Separating variables,

X ′′ + λX = 0
X(0) = X(L) = 0
λn = (nπ/L)2

Xn(x) = sin(nπx/L)

T ′′ + 4λnT = 0
Tn(t) = cn cos(2nπt/L) + dn sin(2nπt/L)

Putting the solution together, we have

u(x, t) =
∞∑
n=1

sin(nπx/L) [cn cos(2nπt/L) + dn sin(2nπt/L)]

To find cn, dn, we use the initial conditions- For u(x, 0) = 0, we’ll have

0 =
∞∑
n=1

cn sin(nπx/L) ⇒ cn = 0

Now for dn, we compute ut(x, t) first:

ut(x, t) =
∞∑
n=1

sin(nπx/L)(2nπ/L)dn cos(2nπt/L)

Now use ut(x, 0) = cos(x) to get

cos(x) =
∞∑
n=1

(2nπ/L)dn sin(nπx/L) ⇒ dn =
1

nπ

∫ L

0

cos(x) sin(nπx/L) dx
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4. Consider
ut = uxx 0 < x < 1
u(x, 0) = f(x)
ux(0, t) = t
ux(1, t) = t2

Convert the PDE into one with homogeneous boundary conditions, and write the new
PDE that one would need to solve (with the new BCs).

SOLUTION: We also did this one in class. The idea is that we’re treating t and t2 as
if they were constants. For example, we could set t = A and t2 = B, then find the
simplest form for v′(x) so that

v′(0) = A and v′(1) = B

The line between (0, A) and (1, B) is (in point-slope form, using (0, A)):

v′(x)− A =
B − A

1
(x− 0) ⇒ v′(x) = (t2 − t)x+ t

Therefore,

v(x, t) =
1

2
x2(t2 − t) + xt

Now, we set u(x, t) = w(x, t)+ v(x, t) and find the PDE that w will satisfy (which will
include the homogeneous BCs)- Remember that u solves the original PDE.

ut = wt + vt = wt + x2t− 1

2
x2 + x

and
uxx = wxx + (t2 − t)

Therefore, if ut = uxx, then for w we have

wt = wxx + (t2 − t)− x2t+
1

2
x2 − x

For the initial and boundary conditions:

w(x, 0) = u(x, 0)− v(x, 0) = f(x)
wx(0, t) = 0
wx(1, t) = 0

5. Solve the nonhomogeneous PDE below.

utt = uxx + sin(x) 0 < x < π
u(x, 0) = sin(3x)
ut(x, 0) = sin(5x)
u(0, t) = 0
u(π, t) = 0
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Remember to use the eigenfunction approach, which in this case will be Xn(x) =
sin(nx). We write u using a generic Tn(t):

u(x, t) =
∞∑
n=1

Tn(t) sin(nx)

We’ll be putting this back into the PDE, but we can get some initial conditions first.

u(x, 0) = sin(3x) =
∞∑
n=1

Tn(0) sin(nx) ⇒ Tn(0) =

{
0 if n ̸= 3
1 if n = 3

ut(x, 0) = sin(5x) =
∞∑
n=1

T ′
n(0) sin(nx) ⇒ T ′

n(0) =

{
0 if n ̸= 5
1 if n = 5

Now put u(x, t) into the PDE:

∞∑
n=1

T ′′
n (t) sin(nx) =

∞∑
n=1

−n2Tn(t) sin(nx) + sin(x)

We’ll have three special cases, then all the other cases:

� n = 1 (because of the sin(x) on the right side):

T ′′
1 + T = 1 T1(0) = 0, T ′

1(0) = 0 ⇒ T1(t) = 1− cos(t)

� n = 3:
T ′′
3 + 9T3 = 0 T3(0) = 1, T ′

3(0) = 0 ⇒ T3(t) = cos(3t)

� n = 5:

T ′′
5 + 25T5 = 0 T5(0) = 0, T ′

5(0) = 1 ⇒ T5(t) =
1

5
sin(5t)

� All other n’s:

T ′′
n + n2Tn = 0 with Tn(0) = 0, T ′

n(0) = 0 ⇒ Tn(t) = 0

Now put it all together:

u(x, t) = sin(x)(1− cos(t)) + sin(3x) cos(3t) +
1

5
sin(5x) sin(5t)

6. In D’Alembert’s solution to the wave equation, we started with the equation below
and made the following change of coordinates:

utt = c2uxx
ξ = x+ ct
η = x− ct
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Write down the new PDE we get in u(ξ, η). Show your work!

SOLUTION:

ut = uξξt + uηηt = cuξ − cuη

utt = (cuξ − cuη)ξξt + (cuξ − cuη)ηηt = c2(uξξ − 2uηξ + uηη)

Similarly,
ux = uξ + uη

uxx = uξξ + 2uηξ + uηη

Therefore,
c2uxx − utt = 4c2uηξ = 0 ⇒ uηξ = 0

7. Given x2ux + yuy + xyu = 1, use a change of coordinates so that the new equation
involves only one derivative, and write the new equation (using variables ξ, η). Do
NOT solve the PDE.

SOLUTION:
dx

x2
=

dy

y

The variables are already separated, so integrate both sides.∫
x−2 dx =

∫
1

y
dy ⇒ C = ln(y) + x−1

That is our change of variables:

ξ = x
η = ln(y) + x−1

Therefore, x2ux + yuy = x2uξ = ξ2uξ, and the PDE so far is:

ξ2uξ + xyu = 1

For the last substitution, x = ξ, and y = eη−1/ξ, so our PDE becomes:

ξ2uξ + ξeη−1/ξu = 1

8. Solve the heat equation ut = 4uxx for a rod of length π with both ends insulated if
u(x, 0) = f(x). You may formally solve the PDE, meaning any integrals should be
written down, but you can leave them unevaluated.

SOLUTION: “Both ends insulated” means that ux(0, t) = ux(π, t) = 0. Therefore, we
have the 4th case in the eigenfunctions summary, so that

λ0 = 0, X0(x) = 1
λn = n2, Xn(x) = cos(nx)

⇒ T ′ = 0
T ′ + 4n2T = 0

⇒ T0(t) = C0

Tn(t) = Cne
−4n2t
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Now the solution is given by:

u(x, t) = C0 +
∞∑
n=1

Cne
−4n2t cos(nx)

Now use the initial conditions to determine the coefficients:

u(x, 0) = f(x) = C0 +
∞∑
n=1

Cn cos(nx)

so that

C0 =
a0
2

=
1

π

∫ π

0

f(x) dx

Cn =
2

π

∫ π

0

f(x) cos(nx) dx

9. Give a formal solution to the wave equation below (meaning write down any integrals
you’re computing, but you may leave them unevaluated).

utt = 9uxx

u(x, 0) = f(x)
ut(x, 0) = g(x)
u(0, t) = 0
ux(L, t) = 0

SOLUTION: Notice that the interval for x is finite; 0 < x < L, so that we cannot
use D’Alembert’s solution (the way we derived it). Therefore, we have to separate
variables. The BCs lead us to BC2 on the table, so that we get the following (in the
last entry, (2L) is in the denominator).

X ′′ + λX = 0
X(0) = 0
X ′(L) = 0

⇒ λn = ((2n− 1)π/2L)2

Xn(x) = sin((2n− 1)πx/2L)

For T , we have
T ′′ + 9λnT = 0
Tn(t) = Cn cos(3

√
λnt) +Dn sin(3

√
λnt)

Now for the full sum:

u(x, t) =
∞∑
n=1

sin((2n− 1)πx/2L)
[
Cn cos(3

√
λnt) +Dn sin(3

√
λnt)

]
We should find

Cn =
2

L

∫ L

0

f(x) sin((2n− 1)πx/2L) dx

and

3
√
λnDn =

2

L

∫ L

0

g(x) sin((2n− 1)πx/2L) dx

(then solve for Dn).

7


