Complex Solutions to Real Solutions, Part II

CONTEXT: We are solving x' = Ax and we have obtained a complex eigenvalue, λ . Corresponding to λ is the eigenvector v. Why can go from:

$$c_1 e^{\lambda t} \boldsymbol{v} + c_2 e^{\bar{\lambda} t} \bar{\boldsymbol{v}}$$

To:

$$C_1 \operatorname{Re}\left(e^{\lambda t} \boldsymbol{v}\right) + C_2 \operatorname{Im}\left(e^{\lambda t} \boldsymbol{v}\right)$$

To show why, we state a theorem:

Theorem: If a set of eigenvalues is distinct, the eigenvectors are linearly independent. (See Chapter 5.1, Theorem 2 of David Lay's Linear Algebra book, for example).

In particular, this theorem holds for λ , $\bar{\lambda}$. Therefore, \boldsymbol{v} and $\bar{\boldsymbol{v}}$ are linearly independent.

We now show that Re(v) and Im(v) are linearly independent vectors.

Let $\mathbf{v} = \mathbf{a} + i\mathbf{b}$, so that $\bar{\mathbf{v}} = \mathbf{a} - i\mathbf{b}$. Since $\mathbf{v}, \bar{\mathbf{v}}$ are linearly independent, the only solution to the following equation is trivial:

$$c_1 (\boldsymbol{a} + i\boldsymbol{b}) + c_2 (\boldsymbol{a} - i\boldsymbol{b}) = \mathbf{0}$$

which is equivalent to saying that the only solution to the following equation is trivial:

$$(c_1 + c_2)\mathbf{a} + i(c_1 - c_2)\mathbf{b} = \mathbf{0}$$

But the solution to this equation is equivalent to the solution of:

$$k_1 \boldsymbol{a} + k_2 \boldsymbol{b} = \boldsymbol{0}$$

Therefore, we have proven that the vectors \boldsymbol{a} and \boldsymbol{b} are linearly independent. Therefore, the real part of \boldsymbol{v} and the imaginary part of \boldsymbol{v} are linearly independent, and:

$$\operatorname{Re}\left(\mathrm{e}^{\lambda t}oldsymbol{v}\right)$$
 and $\operatorname{Im}\left(\mathrm{e}^{\lambda t}oldsymbol{v}\right)$

are linearly independent solutions.

We might also compare this with what we said in the second order linear differential equation case:

If:

$$k_1y'' + k_2y' + k_3y = 0$$

and $r = a \pm ib$, then the solution is:

$$y(t) = c_1 e^{at} \cos(bt) + c_2 e^{at} \sin(bt)$$

which can also be written as:

$$y(t) = c_1 \operatorname{Re}(e^{rt}) + c_2 \operatorname{Im}(e^{rt})$$