Integration Practice

You can use your Calculus book to help you integrate the following. Remember that a general antiderivative has a constant!

1.

$$\int \frac{3x}{2 - x^2} \, \mathrm{dx}$$

2.

$$\int \cos^2(3r)\sin(3r) \, \mathrm{d}r$$

3.

$$\int e^{-t} \sin(t) dt$$

4.

$$\int \frac{1}{x^2 - 4} \, \mathrm{dx}$$

5.

$$\int \frac{\sin(x)}{\cos(x)} \, \mathrm{d}x$$

6.

$$\int \frac{1}{w^2 + 1} \, \mathrm{dw}$$

7.

$$\int \frac{\mathrm{dx}}{x \ln(x)}$$

8.

$$\int \frac{x+5}{x^2+x-2} \, \mathrm{d}x$$

9.

$$\int \frac{\sqrt{x-2}}{x+2} \, \mathrm{dx}$$

10.

$$\int t^3 e^{-2t} dt$$

11.

$$\int e^{x+e^x} dx$$

12.

$$\int \frac{2x+5}{x-3} \, \mathrm{dx}$$

13.

$$\int \frac{\mathrm{dx}}{a^2 - x^2} \, \mathrm{dy}$$

14.

$$\int x \sqrt[3]{x+c} \, \mathrm{d} x$$

Recognition Problems

For each problem, state the method you would use to solve it. Do not actually do so. Your choices are: Separation of Variables, Integrating Factor, or Neither. Some equations may have more than one option.

1.
$$x' = -2x$$

2.
$$x' = 3t - 2x$$

3.
$$x' = t^2 \sin(x)$$

4.
$$x' = \frac{1}{3}e^{-\frac{k}{m}t}$$

5.
$$x' + t^2x = 4$$

6.
$$x'' = 3t^2 - \cos(t)$$

7.
$$x' = t^2 + \sin(x)$$

8.
$$p' = p^2 - 3p + 2$$

9.
$$y' = \sin(y+2)$$

$$10. \ x' + \sin(t)x = 0$$